Math, asked by jayGkcvvv, 1 year ago

give me the formula of trigonometry

Answers

Answered by anishin
4
Trigonometric functions

sin α,    cos α

tan α = sin α,   α ≠ π + πn,   n є Zcos α2

cot α = cos α,   α ≠ π + πn,   n є Zsin α

tan α · cot α = 1

sec α = 1,   α ≠ π + πn,   n є Zcos α2

cosec α = 1,   α ≠ π + πn,   n є Zsin α

Pythagorean identity

sin2 α + cos2 α = 1

1 + tan2 α = 1cos2 α

1 + cot2 α = 1sin2 α

Sum-Difference Formulas

sin(α + β) = sin α · cos β + cos α · sin β

sin(α – β) = sin α · cos β – cos α · sin β

cos(α + β) = cos α · cos β – sin α · sin β

cos(α – β) = cos α · cos β + sin α · sin β

tan(α + β) = tan α + tan β1 – tanα · tan β

tan(α – β) = tan α – tan β1 + tanα · tan β

cot(α + β) = cotα · cot β - 1cot β + cot α

cot(α - β) = cotα · cot β + 1cot β - cot α

Double angle formulas

sin 2α = 2 sin α · cos α

cos 2α = cos2 α - sin2 α

tan 2α = 2 tan α1 - tan2 α

cot 2α = cot2 α - 12 cot α

Triple angle formulas

sin 3α = 3 sin α - 4 sin3 α

cos 3α = 4 cos3 α - 3 cos α

tan 3α = 3 tan α - tan3 α1 - 3 tan2 α

cot 3α = 3 cot α - cot3 α1 - 3 cot2 α

Power-reduction formula

sin2 α = 1 - cos 2α2

cos2 α = 1 + cos 2α2

sin3 α = 3 sin α - sin 3α4

cos3 α = 3 cos α + cos 3α4

Sum (difference) to product formulas

sin α + sin β = 2 sin α + β cos α - β22

sin α - sin β = 2 sin α - β cos α + β22

cos α + cos β = 2 cos α + β cos α - β22

cos α - cos β = -2 sin α + β sin α - β22

tan α + sin β =  sin(α + β)cos α · cos β

tan α - sin β =  sin(α - β)cos α · cos β

cot α + sin β =  sin(α + β)sin α · sin β

cot α - sin β =  sin(α - β)sin α · sin β

a sin α + b cos α = r sin (α + φ),

where r2 = a2 + b2, sin φ = b , tan φ = bra

Product to sum (difference) formulas

sin α · sin β = 1(cos(α - β) - cos(α + β))2

sin α · cos β = 1(sin(α + β) + sin(α - β))2

cos α · cos β = 1(cos(α + β) + cos(α - β))2

Tangent half-angle substitution

sin α = 2 tan (α/2)1 + tan2 (α/2)

cos α = 1 - tan2 (α/2)1 + tan2 (α/2)

tan α = 2 tan (α/2)1 - tan2 (α/2)

cot α = 1 - tan2 (α/2)2 tan (α/2)


jayGkcvvv: thnx
Answered by HelpingMrMaster8383
0

By using a right-angled triangle as a reference, the trigonometric functions and identities are derived:

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite SideReciprocal Identities

The Reciprocal Identities are given as:

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Periodicity Identities (in Radians)

These formulas are used to shift the angles by π/2, π, 2π, etc. They are also called co-function identities.

sin (π/2 – A) = cos A & cos (π/2 – A) = sin A

sin (π/2 + A) = cos A & cos (π/2 + A) = – sin A

sin (3π/2 – A) = – cos A & cos (3π/2 – A) = – sin A

sin (3π/2 + A) = – cos A & cos (3π/2 + A) = sin A

sin (π – A) = sin A & cos (π – A) = – cos A

sin (π + A) = – sin A & cos (π + A) = – cos A

sin (2π – A) = – sin A & cos (2π – A) = cos A

sin (2π + A) = sin A & cos (2π + A) = cos ASolved

Problems

Q.1:What is the value of (sin30° + cos30°) – (sin 60° + cos60°)?

Sol: Given,

(sin30° + cos30°) – (sin 60° + cos60°)

= ½ + √3/2 – √3/2 – ½

= 0

Q.2: If cos A = 4/5, then tan A = ?

Sol: Given,

Cos A = ⅘

As we know, from trigonometry identities,

1+tan2A = sec2A

sec2A – 1 = tan2A

(1/cos2A) -1 = tan2A

Putting the value of cos A = ⅘.

(5/4)2 – 1 = tan2 A

tan2A = 9/16

tan A = 3/4Inverse Trigonometry Formulas

sin-1 (–x) = – sin-1 x

cos-1 (–x) = π – cos-1 x

tan-1 (–x) = – tan-1 x

cosec-1 (–x) = – cosec-1 x

sec-1 (–x) = π – sec-1 x

cot-1 (–x) = π – cot-1 x

Similar questions