Math, asked by krishana65, 5 months ago

Give possible expression for length, breadth and height of a cuboid whose

volume is 2ky^2 − 14ky + 20k.​

Answers

Answered by PharohX
2

Step-by-step explanation:

 \sf \large \blue{ \star \: GIVEN}

 \displaystyle \sf \: Volume \:  of  \: cubiod \:  = 2k {y}^{2}  - 14ky + 20

 \sf \large  \blue{\star TO  \: FIND}

 \sf \: Possible  \: dimensions \:  of \:  cubiod

 \sf \large \blue{ \star SOLUTION}

 \displaystyle \sf \: Volume \:  of  \: cubiod \:  = 2k {y}^{2}  - 14ky + 20  \\ \sf common \: the \:  \: same \: term \\  \sf \:  = 2k( {y}^{2}  - 7y + 10) \\  = \sf \:  2 \times k \times ( {y}^{2}  - y7 + 10)

 \sf \: volume \: of \: cubiod \:  =( length) \times (breadth) \times (height) \\  \sf \: compare \: it \:  \: with \: the \: volume \: given \: we \: get \\

 \sf \: dimensions \: of \: cubiod \: is \:   \\  \sf\: 2 \: and \: \: k \:  \: and \: ( {y}^{2}  - 7x + 10)

Similar questions