Math, asked by fizafens, 4 months ago

GIVE THE ANSWER ASAP!!!!

Attachments:

Answers

Answered by nightread
1

Answer:

∠AOC + ∠COB = 180° (Linear Pair)

(3x + 5) + (2x - 25) = 180°

3x + 5 + 2x - 25 = 180°

3x + 2x + 5 - 25 = 180°

5x - 20 = 180°

5x = 180° + 20

5x = 200°

x = 200° ÷ 5

x = 40°

Hence ∠AOC = 3x + 5

= 3  × 40° + 5

= 120° + 5

= 125°

∠COB = 2x - 25

= 2 × 40° - 25

= 80° - 25

= 55°

Hope it helps

Answered by Rubellite
8

\Large{\underbrace{\sf{\orange{Required\:Solution:}}}}

∠AOC + ∠COB = 180°

  • Reason : Line pαir αxiom.

\displaystyle{\sf{(3x+5)^{\circ} + (2x-25)^{\circ} = 180^{\circ}}}

\longrightarrow{\sf{3x+2x+5-25=180^{\circ}}}

\longrightarrow{\sf{5x-20^{\circ}=180^{\circ}}}

  • Transpose -20° to R.H.S.

\longrightarrow{\sf{5x=180^{\circ}+20^{\circ}}}

\longrightarrow{\sf{5x=200^{\circ}}}

  • Transpose 5 to R.H.S.

\longrightarrow{\sf{x= \dfrac{200^{\circ}}{5}}}

  • Cancel out these numbers.

\longrightarrow{\sf{x= \dfrac{\cancel{200^{\circ}}}{\cancel{5}}}}

\large\implies{\boxed{\sf{\orange{ x =40^{\circ}}}}}

So, ∠AOC = (3x+5)° = [3(40)+5]°

\implies 120°+5° = 125°

Hence, the value of ∠AOC is 125°

And we are done! :D

__________________________

Similar questions