Math, asked by mishrauma889, 2 months ago

Give the answer I will mark the person brainlist and will also get points.​

Attachments:

Answers

Answered by IlMYSTERIOUSIl
25

we know that,

sum of linear pair is 180°

 \sf :  \longrightarrow \: 30 + (2x - 10) + (x + 10) + 15 \:  = 180

 \sf :  \longrightarrow \: 30 + 2x - 10 + x + 10 + 15 \:  = 180

\sf :  \longrightarrow \: 45 + 3x  \:  = 180

\sf :  \longrightarrow \: 3x  \:  = 135

\sf :  \longrightarrow \: x  \:  = \dfrac{ 135}{3}

\sf :  \Longrightarrow \: x  \:  = \bold 45 \degree

  • → 2x - 10
  • → 2 × 45 - 10
  • → 80

  • → x + 10
  • → 45 + 10
  • → 55
Answered by Anonymous
72

{\large{\bf{\red{\clubs{\underline{\underline{\mathfrak{ Solution:}}}}}}}}

Concept Used :

Linear Pair : Sum of all angles connected to a same point is 180°.

Than :

{\mapsto{\text{Angle 1 + Angle 2 + Angle 3 + Angle 4 = 180°}}}

{\leadsto{\sf{30° + ( 2x-10°) + (x +10°) + 15° = 180°}}}

{\leadsto{\sf{45° + 3x = 180°}}}

{\leadsto{\sf{3x = 180° - 45°}}}

{\leadsto{\sf{x =  {\cancel\frac{135}{3} }}}}

{\large{\purple{:{\longmapsto{\underline{\boxed{\bf{X = 45°}}}}}}}}</p><p>

So,

{\red{\underline{\purple{\underline{\boxed{\red{\mathfrak{X \:  is \:  45°}}}}}}}}

______________________

For Varification :

{\dashrightarrow{\sf{30° + ( 2x-10°) + (x +10°) + 15° = 180°}}}

{\dashrightarrow{\sf{30° + ( 2 \times 45-10°) + (45+10°) + 15° = 180°}}}

{\dashrightarrow{\sf{30° + ( 90-10°) + (45+10°) + 15° = 180°}}}

{\dashrightarrow{\sf{30° +80 ° + 55° + 15° = 180°}}}

{\red{\mapsto{\underline{\bf{180° = 180°}}}}}

{\red{\mapsto{\underline{\bf{LHS = RHS}}}}}

Hence, Varified.

______________________

Similar questions