Chemistry, asked by dimple658, 10 months ago

give the correct answer​

Attachments:

Answers

Answered by Atαrαh
7

Given:

 \lambda• = threshold \: wavelength

 \lambda = wavelength \: of  \: light   \:    incident  \: on  \: surface

given velocity of ejected electron

 \implies{v =  \sqrt{ \frac{2h}{m} ( \lambda•  -  \lambda)K} ...(1)}

Solution :

we know that ,

 \implies{E = W + KE }

 \implies{ \frac{hc}{ \lambda} = \frac{hc}{ \lambda• } +  \frac{m {v}^{2} }{2} }

 \implies{v =  \sqrt{ \frac{2hc}{m} ( \frac{1}{\lambda}  -  \frac{1}{\lambda•} )} }

 \implies{v =  \sqrt{ \frac{2hc}{m} ( \frac{ \lambda•  -  \lambda}{\lambda\lambda•}  )}...(2)}

Now equating equation (1) and (2) we get ,

 \implies{  \sqrt{ \frac{2hc}{m} ( \frac{ \lambda•  -  \lambda}{\lambda\lambda•}  )} = \sqrt{ \frac{2h}{m} ( \lambda•  -  \lambda)K}}

 \implies{\sqrt{ \frac{2h}{m} ( { \lambda•  -  \lambda} ) \frac{c}{ \lambda \lambda• } } = \sqrt{ \frac{2h}{m} ( \lambda•  -  \lambda)K}}

 \boxed{K = \frac{c}{ \lambda \lambda• } }

Similar questions