Math, asked by gugu81, 10 months ago

Give the integration of 1/ Sin∅ + Cos ∅


























































































Answers

Answered by sidrgondane2005
25

Step-by-step explanation:

Int dx/(sinx+cosx)= Int (cosx-Sinx)dx/(Cos2x-sin2x)= Int cosx dx/ (1-2Sin2x) - Int sinx dx/ (2cos2x-1) ..(.1)

Let 1-2sin2x =u and 2cos2x-1 =v

so, du= -2 (2)cosx dx =-4cosx dx, thus cosx dx = -1/4 du........(2)

and dv= -2 (2) sinx dx = -4sin x dx, thus sinx dx= -1/4 dv....(3)

let's now plug-in the value of sin x and cosx in (1)

We have int -1/4 (du)/u - Int (-1/4) dv/v

=-1/4 ln(u) -1/4 ln (v)+C

= -1/4 ln (2cos2x-1)-1/4 ln (1-2sin2x) +C

Answered by TheInsaneGirl
57

 \int \:  \dfrac{1}{sin \:  \theta \:  . cos \:  \theta}  \:  \: dx \\  \\ \implies \:  \int \dfrac{sin {}^{2} \:  \theta \:  \:  + cos {}^{2} \:  \theta  }{sin \:  \theta.cos \: \theta} \:  \:  dx \\  \\  \\  \implies \:  \int \:  \dfrac{sin {}^{2} \:  \theta }{ \: sin \:  \theta.cos \: \theta} dx  +  \dfrac{cos {}^{2} \:  \theta }{ \: sin \:  \theta.cos \: \theta}  \: dx

<Separating the integral by dividing numerator and denominator >

 \implies \int \: tan \:  \theta \: dx \:  +  \:  \int \: cot \:  \theta \: dx \\  \\  \implies \: log \:   |sec \:  \theta|  + log \:  \ |sin \:  \theta|  + c

Similar questions