Math, asked by subhashsatyam, 1 year ago

give the solution of this question

Attachments:

Answers

Answered by samrat00725100
0

 \frac{\sqrt{2} + i}{\sqrt{2} - i}

 \frac{\sqrt{2} + i}{\sqrt{2}-i} \times \frac{\sqrt{2}+i}{\sqrt{2}+i}

 \frac{(\sqrt{2}+i)^2}{(\sqrt{2})^2-i^2}

 \frac{2+ 2\sqrt{2}i + i^2}{2-(-1)} \Rightarrow \frac{2+2\sqrt2i-1}{2+1}

 \frac{1+2\sqrt2i}{3} \Rightarrow \frac{1}{3} + i\frac{2\sqrt2}{3}

 \text{Real part : } \frac{1}{3} \text{ and, imaginary part : } \frac{2\sqrt2}{3}

 \text{Modulus of complex number : } \sqrt{Re(i)^2+Im(i)^2}

 \sqrt{(\frac{1}{3})^2+(\frac{2\sqrt2}{3})^2}

 \sqrt{\frac{1}{9}+\frac{8}{9}}

 \sqrt{\frac{1+8}{9}}

 \sqrt{\frac{\cancel{9}}{\cancel{9}}}

 \sqrt{1}

 1

Answered by a1p1
0
option c is correct
Attachments:
Similar questions