Math, asked by mozammil921, 10 months ago

Give the whole solution....​

Attachments:

Answers

Answered by TooFree
2

Given:

\sqrt{\dfrac{8^{10} + 4^{10}}{64^2+4^9 \times 16} }

\\

To Find:

The simplest form

\\

Solution:

\\

\sqrt{\dfrac{8^{10} + 4^{10}}{64^2+4^9 \times 16} }

\\

Rewrite all the numbers to base number of 2:

\\

= \sqrt{\dfrac{2^{3\times10} + 2^{2\times 10}}{2^{6 \times 2}+2^{2 \times 9} \times 2^4} }

\\

= \sqrt{\dfrac{2^{30} + 2^{20}}{2^{12}+2^{18} \times 2^4} }

\\

Apply: aⁿ  x aˣ = aⁿ⁺ˣ:

\\

 = \sqrt{\dfrac{2^{30} + 2^{20}}{2^{12}+2^{18 + 4} }

\\

= \sqrt{\dfrac{2^{30} + 2^{20}}{2^{12}+2^{22} }

\\

Take out common terms:

\\

= \sqrt{\dfrac{2^{20}(2^{10} + 1) }{2^{12}(1+2^{10}) }

\\

= \sqrt{\dfrac{2^{20}(2^{10} + 1) }{2^{12}(2^{10} + 1) }

\\

Simplify by cancelling the same term for numerator and denominator:

\\

= \sqrt{\dfrac{2^{20} }{2^{12} }

\\

Apply: aⁿ  ÷ aˣ = aⁿ⁻ˣ:

\\

= \sqrt{2^{20 - 12} }

\\

= \sqrt{2^{8} }

\\

= 2^4

\\

Find the value:

= 16

Similar questions