Give this answer please
Attachments:
Answers
Answered by
4
Answer:
Given−Oisthecentreofacircle,inscribedinaquadrilateral
ABCD.
Theradiusofthecircleis10cm.
∠BAD=90
o
.
AB,BC,CD&ADtouchtheinscribedcircleatP,Q,R&S
respectively.
CR=27cmandBC=38cm.
Tofindout−
AB=x=?
Solution−
WejoinOS&OP.ThenOS&OPareradiiofthe
inscribedcirclethroughthepointsofcontactofthetangents
AS&APrespectively.
∴OS=OP=10cm.
Again∠OSA=90
o
=∠OPAsincetheradiusthroughthepointof
contactofatangenttoacircleisperpendiculartothetangent.
NowinOSAP,∠OSA=90
o
=∠OPAandOS=OP=10cm.
∴OSAPisasquareofside10cm.
SoAP=OS=10cm.
AgainCR=CQ=27cmandBQ=BPsincethelengthsofthetangents,
fromapointtoacircle,areequal.
∴BQ=BC−CQ=(38−27)cm=11cm.
AlsoBP=BQ=11cm.
∴AB=x=AP+BP=(10+11)cm=21cm.
Ans−OptionD.
Answered by
0
Answer:
thanks for freepoints........
Similar questions
Math,
3 months ago
Science,
3 months ago
Art,
3 months ago
Social Sciences,
7 months ago
History,
1 year ago