Given 15 cot A = 8, find sin A and sec A.
Answers
Answered by
60
SOLUTION :
Given: 15 cot A = 8
cot A = 8/15
Cot A = base / Perpendicular = 8/15
Base = 8
Perpendicular side = 15
We draw a ∆ ABC right angled at B.
In ΔABC,
Let BC = Perpendicular = 15 , AB = Base = 8
Hypotenuse= (AC)
AC² = AB² + BC²
[by using Pythagoras theorem]
AC² = 8² + 15²
AC² = 64 + 225
AC² = 289
AC = √289
AC = 17
Therefore, hypotenuse (AC) =17
sin A= Perpendicular / Hypotenuse
sin A = BC/AC
sin A=15/17
sec A= Hypotenuse / Base
sec A= AC / AB
sec A = 17/8
Hence, sin A = 15/17, sec A = 17/8
HOPE THIS ANSWER WILL HELP YOU...
Attachments:
Answered by
24
cot A = cos A / sin A = 8/15
cot A = Base / Perpendicular = 8/15
Base = 8k
Perpendicular = 15k
Hypotenuse²
= (15k)² + (8k)²
= 225k²+64k²
= 289k²
Hypotenuse = 17k
sin A = perpendicular/Hypotenuse
= 15k/17k = 15/17
sec A = Hypotenuse/Base = 17k/8k = 17/8
cot A = Base / Perpendicular = 8/15
Base = 8k
Perpendicular = 15k
Hypotenuse²
= (15k)² + (8k)²
= 225k²+64k²
= 289k²
Hypotenuse = 17k
sin A = perpendicular/Hypotenuse
= 15k/17k = 15/17
sec A = Hypotenuse/Base = 17k/8k = 17/8
jatboy67:
use bhul jao
Similar questions