Math, asked by jatinderk160, 1 year ago

given 15 cot A =8 find the other trigomnometric ratios of angleA

Answers

Answered by gangireddy1977owtlrr
42
15 cotA=8
cotA=8/15
cotA=adjacent side /opposite side
therefore adjacent side=8
opposite side=15 
by pythogorous theorem 
hypotenus²=15²+8²
hypotenus²=225+64
hypotenus=√289
hypotenus=17
tanA=opp/adj
tanA=15/8
sinA=opp/hyp
sinA=15/17
cosA=adj/hyp
cosA=8/17
secA=hyp/adj
secA=17/8
cosecA=hyp/opp
cosecA=17/15


Answered by pinquancaro
63

Answer and explanation:

Given : 15\cot A=8

To find : The other trigonometric ratios of angle A ?

Solution :

We know that,

\cot A=\frac{B}{P}

Where, B is the base and P is the perpendicular

\cot A=\frac{8}{15}

Now, We find hypotenuse

H^2=P^2+B^2

H^2=(15)^2+(8)^2

H^2=225+64

H=\sqrt{289}

H=17

So, H=17 , B=8 , P=15

\sin A=\frac{P}{H}=\frac{15}{17}

\cos A=\frac{B}{H}=\frac{8}{17}

\csc A=\frac{H}{P}=\frac{17}{15}

\sec A=\frac{H}{B}=\frac{17}{8}

\tan A=\frac{P}{B}=\frac{15}{8}

Similar questions