Math, asked by anzzahmed1230, 6 months ago

Given 2^x=3^y=6^z find z in terms of x and y

Answers

Answered by Bidikha
4

Given -

 {2}^{x}  =  {3}^{y}  =  {6}^{z}

To find -

The value of z

Solution -

Let \:  \:  {2}^{x}  =  {3}^{y}  =  {6}^{z}  = k

Then,

 \implies{2}^{x}  = k

⟹\:  \: 2 =  {k}^{ \frac{1}{x} } ........1)

And,

⟹{3}^{y}  = k

⟹3 =  {k}^{ \frac{1}{y} } ......2)

And,

⟹{6}^{z}  = k

⟹6 =  {k}^{ \frac{1}{z} }

⟹2 \times 3 =  {k}^{ \frac{1}{z} }

⟹ {k}^{ \frac{1}{x} }  \times  {k}^{ \frac{1}{y} }  =  {k}^{ \frac{1}{z} } (by \: 1 \: and \: 2)

 ⟹{k}^{ \frac{1 }{x}  +  \frac{1}{y} }  =  {k}^{ \frac{1}{z} }

 ⟹\frac{1}{x}  +  \frac{1}{y}  =  \frac{1}{z}

 ⟹\frac{y + x}{xy}  =  \frac{1}{z}

By cross multiplying -

⟹z(y + x) = xy

⟹z =  \frac{xy}{y + x}

Therefore the value of z is xy/y+x

Similar questions