Physics, asked by sanviojha, 1 year ago


Given 2i-2j - 3kand B = 4i-2j+ 6k. Calculate the angle made by (A + B) with x-axis.​

Answers

Answered by Aiimsmamc7
7

Answer:

note check this attachment

Attachments:
Answered by anu24239
10

ANSWER...

vector (1) = 2i - 2j - 3k \\  \\ vector(2) = 4i - 2j + 6k \\  \\ resultant \: vector = vector(1) + vector(2) \\  \\ resultant \: vector = (2  + 4)i - (2 + 2)j + (6 - 3)k \\  \\ resultant \: vector = 6i - 4j + 3k \\  \\  |resultant \:vector |  =  \sqrt{ ({6})^{2}  +  ({4})^{2} +  ({3})^{2}  }  \\  \\  |resultant \: vector|  =  \sqrt{36 + 16 + 9}  \\  \\  |resultant \: vector|  =  \sqrt{61}  \\  \\ let \: the \: angle \: between \: x \: axis \: and \\  \: the \: resultant \: vector \: be \:  \alpha  \: then \\  \\   |resultant \: vector| .i \cos \alpha   = resultant \: vector.i \\  \\  \sqrt{61} .1. \cos \alpha  = (6i - 4j + 3k)(i + 0j + 0k) \\  \\  \cos \alpha  =  \frac{6}{ \sqrt{61} }

Similar questions