Math, asked by Soh23Frh, 1 year ago

Given,
√a+b = 25
√a+√b = 31
Find √ab.

Answers

Answered by PinkyTune
4
Given,                   
                   \sqrt{a+b}=25        — (1.)                                          
                   \sqrt{a}+ \sqrt{b}=31      (2.)

[ used side changing method and (add, subtracting, multiplying, or dividing the same constant to both sides) method, also used some algebraic identities ]

(1.)    \sqrt{a+b}=25
     a+b=25^2
     a+b=625

(2.)     \sqrt{a}+ \sqrt{b}=31
     ( \sqrt{a} +  \sqrt{b})^2 = 31^2
     (\sqrt{a})^2+(2* \sqrt{a}* \sqrt{b})+(\sqrt{b})^2=31^2
     a+2 \sqrt{ab}+b=961
    (a+b)+2 \sqrt{ab}=961
    2 \sqrt{ab}=961-(a+b)
    2 \sqrt{ab}= 961 - 625     [substituting value]
⇒     2 \sqrt{ab}=336
      \sqrt{ab}= \frac{336}{2}
     \sqrt{ab}=168   (ans.)

Hope this helps you! :')

Soh23Frh: it helped me very much.. thanks!
Similar questions