Math, asked by MiIdred, 4 months ago

Given A.P : 2, 5, 8, 11, ....
Calculate the sum of the 22 terms of the A.P.

Answers

Answered by Anonymous
7

Given

  • A.P = 2, 5, 8, 11, ....

To find

  • Sum of 22 terms of the given A.P.

Solution

  • We have an A.P with

\tt\longrightarrow{First\: term (a) = 2}

\tt\longrightarrow{Common\: difference (d) = 3}

As we need to find the sum of 22 terms, so

\tt\longrightarrow{Number\: of\: terms (n) = 22}

\: \: \: \: \: \: \: \: \: \:\underline{\sf{\red{Using\: Formula}}}

\: \: \: \: \: \: \: \: \: \: \boxed{\bf{\bigstar{S_n = \dfrac{n}{2} \bigg\lgroup 2a + (n - 1)d \bigg\rgroup{\bigstar}}}}

  • Putting the values

\tt:\implies\: \: \: \: \: \: \: \: {S_{22} = \dfrac{22}{2} \bigg\lgroup 2(2) + (22 - 1) \times 3 \bigg\rgroup}

\tt:\implies\: \: \: \: \: \: \: \: {S_{22} = 11 \bigg\lgroup 4 + (21 \times 3) \bigg\rgroup}

\tt:\implies\: \: \: \: \: \: \: \: {S_{22} = 11 \bigg\lgroup 4 + 63 \bigg\rgroup }

\tt:\implies\: \: \: \: \: \: \: \: {S_{22} = 11 \times 67}

\frak:\implies\: \: \: \: \: \: \: \: {\underline{\boxed{\purple{S_{22} = 737}}}}

Hence,

  • The required sum of the given A.P is 737.

MiIdred: wow bahut achha answer hai
MiIdred: thank you bro
Anonymous: Splendid Rish!!
Similar questions