Math, asked by vaibhavsharma3005, 7 months ago

Given a =
 \binom{ - 3   \:  \:  \:  \: 6 }{0 \:  \:  \:  - 9}
and a^t is its transpose matrix . Find :

{a}^{t}  -  \frac{1}{3} a

Answers

Answered by ItzArchimedes
5

Solution :-

Given matrix ,

  • \sf [A]=\left[\begin{array}{cc}\sf -3&\sf 6\\\sf 0 & \sf -9\end{array}\right]

We need to find ,

  • \sf A^T - \dfrac{1}{3}A

Firstly finding \textbf{\textsf{A$^T$}}

As we know that ,

Transpose matrix :- Transpose of a matrix is defined as the matrix which is converted row to column and column to row .

So , now

\to\textbf{\textsf{A$^T$}}=\sf \left[\begin{array}{cc}\sf 3&\sf 0\\\sf 6 &\sf 9\end{array}\right]

Now , \textbf{\textsf{A$^T$}}-\dfrac{\sf 1}{\sf 3}A

Substituting the value of \sf A^T

\leadsto \sf\left[ \begin{array}{cc}\sf 3&\sf 0\\\sf 6&\sf 9\end{array}\right] - \dfrac{1}{3}\left[\begin{array}{cc}\sf 3&\sf6\\\sf 0&\sf 9\end{array}\right]

\leadsto\sf \left[\begin{array}{cc}\sf 3&\sf 0\\\sf 6&\sf 9\end{array}\right]-\left[\begin{array}{cc}\sf 1 & \sf 2\\\sf 0 & 3 \end{array}\right]

\leadsto\left[\begin{array}{cc}\sf 3-1&\sf 0-2\\\sf 6-0&\sf 9-3\end{array}\right]

\leadsto \left[\begin{array}{cc}\textbf{\textsf{2}}&\textbf{\textsf{$-$2}}\\\textbf{\textsf{ 6}}&\textbf{\textsf{6}}\end{array}\right]

Hence, \sf A^T - \dfrac{1}{3}A = \left[\begin{array}{cc}\textbf{\textsf{2}}&\textbf{\textsf{$-$2}}\\\textbf{\textsf{ 6}}&\textbf{\textsf{6}}\end{array}\right]

Similar questions