Given A = { x : – 2 ≤ x – 1 ≤ 4, x ∈ R} B = { x : – 5 ≤ x – 1 ≤ 2, x ∈ R} Represent the following on different number line: i) A ∩ B ii) A ∪ B
Answers
Step-by-step explanation:
A magic hexagon of order n is an arrangement of numbers in a centered hexagonal pattern with n cells on each edge, in such a way that the numbers in each row, in all three directions, sum to the same magic constant M. A normal magic hexagon contains the consecutive integers from 1 to 3n2 − 3n + 1. It turns out that normal magic hexagons exist only for n = 1 (which is trivial, as it is composed of only 1 hexagon) and n = 3. Moreover, the solution of order 3 is essentially unique.[1] Meng also gave a less intricate constructive proofA magic hexagon of order n is an arrangement of numbers in a centered hexagonal pattern with n cells on each edge, in such a way that the numbers in each row, in all three directions, sum to the same magic constant M. A normal magic hexagon contains the consecutive integers from 1 to 3n2 − 3n + 1. It turns out that normal magic hexagons exist only for n = 1 (which is trivial, as it is composed of only 1 hexagon) and n = 3. Moreover, the solution of order 3 is essentially unique.[1] Meng also gave a less intricate constructive proof