Math, asked by manterasu545, 9 months ago

Given a²/(b+c) = b²/(c+a) = c²/(a+b) = 1
Prove that, 1/(1+a) + 1/(1+b) + 1/(1+c) = 1

Answers

Answered by Anonymous
29

Question:

If \sf\frac{a^2}{(b+c)}=\frac{b^2}{(c+a)}=\frac{c^2}{(a+b)}=1

Prove that,

\sf\frac{1}{(1+a)}+\frac{1}{(1+b)}+\frac{1}{(1+c)}=1

Solution:

\sf\frac{a^2}{(b+c)}=\frac{b^2}{(c+a)}=\frac{c^2}{(a+b)}=1

______________________________

\sf\frac{a^2}{b+c}=1

\implies\sf{a^2=b+c........(i)}

______________________________

\sf\frac{b^2}{c+a}=1

\implies\sf{b^2=c+a.......(ii)}

______________________________

\sf\frac{c^2}{a+b}=1

\implies\sf{c^2=a+b......(iii)}

______________________________

Taking L.H.S,

\sf\frac{1}{(1+a)}+\frac{1}{(1+b)}+\frac{1}{(1+c)}

\implies\sf\frac{a}{a(1+a)}+\frac{b}{b(1+b)}+\frac{c}{c(1+c)}

\implies\sf\frac{a}{a+a^2}+\frac{b}{b+b^2}+\frac{c}{c+c^2}

★Putting all values from (I),(ii)and (iii)no. eq★

\implies\sf\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}

\implies\sf\frac{a+b+c}{a+b+c}

\implies\sf{1}

R.H.S = 1

L.H.S = R.H.S (Proved)

Answered by Anonymous
37

 \huge{ \underline{ \underline{ \green{ \sf{ Detailed \: Answer :}}}}}

Given :

 \frac{a {}^{2} }{b + c} =  \frac{b {}^{2} }{c + a} =  \frac{c {}^{2} }{a + b}  = 1

To prove :

 \frac{1}{1 + a}  +  \frac{1}{1  + b}  +  \frac{1}{1 + c}   = 1

Solution :

Given ;

 \frac{a {}^{2} }{b + c}  =  \frac{b {}^{2} }{c + a} =  \frac{c {}^{2} }{a + b}  = 1

On comparing

⇒a²=b+c ...(1)

⇒b²=c+a ....(2)

⇒c²=a+b ....(3)

________________________

LHS

 =  \frac{1}{1  + a}  + \frac{1}{1 + b}  + \frac{1}{1 + c}

 =  \frac{a}{a( 1 + a)}  +  \frac{b}{b(1 + b)} +  \frac{c}{c(1  + c)}

 =  \frac{a}{a + a {}^{2} } +  \frac{b}{b + b {}^{2} }   \frac{c}{c + c {}^{2} }

Now put value of equation (1),(2)&(3)

 = \frac{a}{a + b + c}  +  \frac{b}{a + b + c}  +  \frac{c}{a + b + c}

 =  \frac{a + b + c}{a + b + c}

 = 1

RHS = 1

⇒LHS = RHS

\huge{\bold{ Hence\: Proved}}

Similar questions