Given ΔABC, where
A = (x1, x1 TanФ1) , B=(x2, x2 TanФ2) and C = (x3, x3 TanФ3)
Circumcenter O = (0, 0).
Orthocenter H = (x₄, y₄) = .
To show that y4/x4 = [SinФ1 + sinФ2 + SinФ3] / [CosФ1 + CosФ2 + CosФ3]
Answers
Answered by
2
Given ΔABC, where
A = (x1, x1 TanФ1) , B=(x2, x2 TanФ2) and C = (x3, x3 TanФ3)
Circumcenter O = (0, 0).
Orthocenter H = (x₄, y₄) = .
To show that y4/x4 = [SinФ1 + sinФ2 + SinФ3] / [CosФ1 + CosФ2 + CosФ3]
Solution:
Now we know that OA² = OB² = OC² = R² , where R = circumradius
=> x1² (1 + Tan²Ф1) = x2² (1+Tan²Ф2) = x3² (1 + Tan²Ф3) = R²
=> x1 / Cos Ф1 = x2 / Cos Ф2 = x3 / Cos Ф3 = R
=> x1 = R CosФ1, x2 = R CosФ2, x3 = R CosФ3
Now, Points A = (R CosФ1, R SinФ1), B = (R CosФ2, R SinФ2)
and C = (R CosФ3, R Sin Ф3)
Centroid of the circle = G
= [ R(CosФ1 +CosФ2 + CosФ3)/3 , R (SinФ1 + SInФ2 + SInФ3)/3 ]
Slope of line OG = (SinФ1 + SinФ2 + SinФ3) / (CosФ1 + CosФ2+CosФ3)
We know that in any triangle the three points circumcenter O, Centroid G and the Orthocenter H are always collinear.
=> Slope of OH =
= y₄ / x₄ = slope of OG
= (SinФ1 + SInФ2 +SinФ3) / (CosФ1 + CosФ2 + CosФ3)
A = (x1, x1 TanФ1) , B=(x2, x2 TanФ2) and C = (x3, x3 TanФ3)
Circumcenter O = (0, 0).
Orthocenter H = (x₄, y₄) = .
To show that y4/x4 = [SinФ1 + sinФ2 + SinФ3] / [CosФ1 + CosФ2 + CosФ3]
Solution:
Now we know that OA² = OB² = OC² = R² , where R = circumradius
=> x1² (1 + Tan²Ф1) = x2² (1+Tan²Ф2) = x3² (1 + Tan²Ф3) = R²
=> x1 / Cos Ф1 = x2 / Cos Ф2 = x3 / Cos Ф3 = R
=> x1 = R CosФ1, x2 = R CosФ2, x3 = R CosФ3
Now, Points A = (R CosФ1, R SinФ1), B = (R CosФ2, R SinФ2)
and C = (R CosФ3, R Sin Ф3)
Centroid of the circle = G
= [ R(CosФ1 +CosФ2 + CosФ3)/3 , R (SinФ1 + SInФ2 + SInФ3)/3 ]
Slope of line OG = (SinФ1 + SinФ2 + SinФ3) / (CosФ1 + CosФ2+CosФ3)
We know that in any triangle the three points circumcenter O, Centroid G and the Orthocenter H are always collinear.
=> Slope of OH =
= y₄ / x₄ = slope of OG
= (SinФ1 + SInФ2 +SinФ3) / (CosФ1 + CosФ2 + CosФ3)
kvnmurty:
:-)
Similar questions
Math,
8 months ago