Math, asked by malikifra315, 5 months ago

given cotA =root 1/3 find all other trigonometric ratios​

Answers

Answered by MITAN19
19

Answer+Step-by-step explanation:

cotA =root 1/3 = 1/root3

so , A = cot^-1( 1/root3) = cot^-1(cot60) = 60

so, A = 60 degree

now  

SinA = sin60 = root3 /2 = 0.866

CosA=cos60 = 1/2 = 0.5

TanA= tan60 = root3 = 1.732

SecA = sec60 = 2

CosecA = cosec60 = 2/root3 = 2/1.732 = 1.154

CotA = cot60 = 1/root3 = 0.577

Answered by Anonymous
160

Given :

 \bf cotA = \sqrt{ \dfrac{1}{3}}

 \bf \implies cotA = \dfrac{1}{\sqrt{3}}

To Find :

All other trigonometric ratios.

  • sinA
  • cosA
  • tanA
  • cosecA
  • secA

Solution :

To do this sum more easily let's make a diagram of right angled triangle ABC.

Now, From point A,

AC = Hypotenuse

BC = Perpendicular

AB = Base

 \bf We \: are \: given, \: cotA = \dfrac{1}{\sqrt{3}}

 \bf We \: know \: that \: cot \theta = \dfrac{base}{perpendicular}

 \bf \implies  \dfrac{base}{perpendicular} = \dfrac{1}{\sqrt{3}}

 \bf \implies  \dfrac{AB}{BC} = \dfrac{1}{\sqrt{3}}

 \bf \implies  AB = 1x \: ; \: BC = \sqrt{3}x \: (x \: is \: positive)

Now, by Pythagoras' theorem, we have

AC² = AB² + BC²

 \bf \implies AC^{2} = (1x)^{2} + (\sqrt{3}x)^{2}

 \bf \implies AC^{2} = 1x^{2} + 3x^{2}

 \bf \implies AC^{2} = 4x^{2}

 \bf \implies AC = \sqrt{4x^{2}}

 \bf \implies AC = 2x

Now,

 \bf sin \theta = \dfrac{perpendicular}{hypotenuse}

 \bf \implies sinA = \dfrac{BC}{AC}

 \bf \implies sinA = \dfrac{\sqrt{3}x}{2x}

 \bf \implies sinA = \dfrac{\sqrt{3}}{2}

 \Large \boxed{\bf sinA = \dfrac{\sqrt{3}}{2}}

 \bf cos \theta = \dfrac{base}{hypotenuse}

 \bf \implies cosA = \dfrac{AB}{AC}

 \bf \implies cosA = \dfrac{1x}{2x}

 \bf \implies cosA = \dfrac{1}{2}

 \Large \boxed{\bf cosA = \dfrac{1}{2}}

 \bf tan \theta = \dfrac{perpendicular}{base}

 \bf \implies tanA = \dfrac{BC}{AB}

 \bf \implies tanA = \dfrac{\sqrt{3}x}{1x}

 \bf \implies tanA = \sqrt{3}

 \Large \boxed{\bf tanA = \sqrt{3}}

 \bf cosec \theta = \dfrac{hypotenuse}{perpendicular}

 \bf \implies cosecA = \dfrac{AC}{BC}

 \bf \implies cosecA = \dfrac{2x}{\sqrt{3}x}

 \bf \implies cosecA = \dfrac{2}{\sqrt{3}}

 \Large \boxed{\bf cosecA = \dfrac{2}{\sqrt{3}}}

 \bf sec \theta = \dfrac{hypotenuse}{base}

 \bf \implies secA = \dfrac{AC}{AB}

 \bf \implies secA = \dfrac{2x}{1x}

 \bf \implies secA = 2

 \Large \boxed{\bf secA = 2}

Attachments:

Anonymous: Awsm!
Similar questions