Math, asked by mohdnadim954035, 8 months ago

Given: In

∆ ,∠=° . If

sec =

13

12

, calculate

all other

trigonometrical ratios.​

Answers

Answered by yooyoyooyo724
0

Answer:

p=5

Step-by-step explanation:

then sin = 5/13 ;cosec=13/5; cos =12/13; tan =5/12; sec=12/5

Answered by Disha976
5

Given that,

 \qquad \rm { • sec \: θ = \dfrac{13}{12} }

__________

We have to find,

 \qquad \rm { • All \: trigonometric \: ratios }

__________

Solution,

We know that ,

 \qquad \rm { • sec \: θ = \dfrac{Hypotenuse}{Base} }

So,

 \qquad \rm { • Hypotenuse = 13}

 \qquad \rm { • Base = 12}

___________

Applying pythagoras property-

 \rm\red { {H}^{2} = {B}^{2} +{P}^{2} }

 \rm { {P}^{2} = {H}^{2} - {B}^{2} }

 \rm { \implies {P}^{2} = {H}^{2} - {B}^{2} }

 \rm { \implies {P}^{2} = {13}^{2} - {12}^{2} }

 \rm { \implies {P}^{2} = 169 - 144 }

 \rm { \implies {P}^{2} = 25 }

 \rm { \implies P = \sqrt{25}= 5 }

____________

 \qquad \rm { • Hypotenuse = 13}

 \qquad \rm { • Base = 12}

 \qquad \rm { • Perpendicular = 5}

____________

 \qquad \rm { • sin \:θ  = \dfrac{P}{H} = \dfrac{5}{13} }

 \:

 \qquad \rm { • cos \:θ  = \dfrac{B}{H} = \dfrac{12}{13} }

 \:

 \qquad \rm { • tan \:θ  = \dfrac{P}{B} = \dfrac{5}{12} }

 \:

 \qquad \rm { • cosec \:θ  = \dfrac{H}{P} = \dfrac{13}{5} }

 \:

 \qquad \rm { • sec \:θ  = \dfrac{H}{B} = \dfrac{13}{12} }

 \:

 \qquad \rm { • cot \:θ  = \dfrac{B}{P }= \dfrac{12}{5} }

Attachments:
Similar questions