Math, asked by kaka24, 1 year ago

given sinx +cosx = 5/4. if 1 + 2sinxcosx = a then find the value of 32a =?

Answers

Answered by rakeshmohata
19
Hope u like my process
=====================
Formula to be used :
--------------------------------
sin²x + cos²x =1

Given :: sinx + cosx =5/4
____________________
1 +2sinxcosx = a

or, sin²x + cos²x + 2sinxcosx = a

or, (sinx + cosx)² = a

or, (5/4)² = a

Thus....

32a = 32× (5/4)² = 32 × 25/ 16

Thus, 32 a = 50

_-_-_-_-_-_-_-_-_-_-_-_-_-_
Hope this is ur required answer
Proud to help you


Answered by Anonymous
54

Step-by-step explanation:

 \bf{question \: }

given sinx+cosx=5/4. If 1+2sinxcosx=a,then find the value of 32a.

Solution:-

We have,

 \bf \: sinx+cosx= \frac{5}{4}   \\ </p><p> \\  \bf \: If  \: 1+2sinxcosx=a

. Solving the equation:-

 \bf \: sinx+cosx= \frac{5}{4}  \\  \\ \bf \:

 \bf \: squaring \: both \: sides

 \bf  {  sin }^{2}  +  {cos}^{2}  =(  { \frac{5}{4} })^{2}

GIVEN:-

 \bf \: sin^2 x+cos ^2x+2 \: sinxcosx=  \frac{25}{16} \:

 \bf \: 1+2 \: sinxcosx=  \frac{25}{16}  \\  \:  \bf \: a =  \frac{25}{16}

 \bf1 +2sinxcosx = a \\ </p><p></p><p> \bf \: or, \\   \bf\: sin^2x + cos^2x + 2sinxcosx = a \\ </p><p></p><p> \bf \: or,  \\ \bf (sinx + cosx)^2= a</p><p> \:

Then putting the value of a from task

\bf32 \: a =  32 ×  \frac{25}{16} \\  \\ \bf 32 \:  a = 2 \times 25 \\  \\ </p><p></p><p>\bf \red {32 \:  a = 50}</p><p></p><p>\: </p><p>

Similar questions