given statement cos tita + cos^tita = 1,then sin^2 tita +sin^4tita=1 true or false
Answers
Answer:
- True.
Explanation:
It's given that,
→ cos(x) + cos²(x) = 1
→ cos(x) = 1 - cos²(x)
As we know that,
→ sin²(x) + cos²(x) = 1
So,
→ sin²(x) = 1 - cos²(x)
Therefore,
→ cos(x) = sin²(x)
Also,
→ cos²(x) = (sin²(x))² = sin⁴(x)
So,
sin²(x) + sin⁴(x)
= sin²(x) + cos²(x)
= 1 [As sin²(x) + cos²(x) = 1]
∆ So, this equality holds true.
Learn More:
1. Relationship between sides.
- sin(x) = Height/Hypotenuse.
- cos(x) = Base/Hypotenuse.
- tan(x) = Height/Base.
- cot(x) = Base/Height.
- sec(x) = Hypotenuse/Base.
- cosec(x) = Hypotenuse/Height.
2. Square formulae.
- sin²x + cos²x = 1.
- cosec²x - cot²x = 1.
- sec²x - tan²x = 1
3. Reciprocal Relationship.
- sin(x) = 1/cosec(x).
- cos(x) = 1/sec(x).
- tan(x) = 1/cot(x).
4. Cofunction identities.
- sin(90° - x) = cos(x) and vice versa.
- cosec(90° - x) = sec(x) and vice versa.
- tan(90° - x) = cot(x) and vice versa.
Step-by-step explanation:
Answer:
True.
Explanation:
It's given that,
→ cos(x) + cos²(x) = 1
→ cos(x) = 1 - cos²(x)
As we know that,
→ sin²(x) + cos²(x) = 1
So,
→ sin²(x) = 1 - cos²(x)
Therefore,
→ cos(x) = sin²(x)
Also,
→ cos²(x) = (sin²(x))² = sin⁴(x)
So,
sin²(x) + sin⁴(x)
= sin²(x) + cos²(x)
= 1 [As sin²(x) + cos²(x) = 1]
- ∆ So, this equality holds true.
Learn More:
- 1. Relationship between sides.
sin(x) = Height/Hypotenuse.
cos(x) = Base/Hypotenuse.
tan(x) = Height/Base.
cot(x) = Base/Height.
sec(x) = Hypotenuse/Base.
cosec(x) = Hypotenuse/Height.
- 2. Square formulae.
sin²x + cos²x = 1.
cosec²x - cot²x = 1.
sec²x - tan²x = 1
- 3. Reciprocal Relationship.
sin(x) = 1/cosec(x).
cos(x) = 1/sec(x).
tan(x) = 1/cot(x).
- 4. Cofunction identities.
sin(90° - x) = cos(x) and vice versa.
cosec(90° - x) = sec(x) and vice versa.
tan(90° - x) = cot(x) and vice versa.