Given that ∫ 0 1 f ( x ) d x = 1 , ∫ 6 3 f ( x ) d x = 6 and ∫ 7 1 f ( x ) d x = 7 . Find ∫ 7 6 f ( x ) d x .
Answers
Answered by
0
Step-by-step explanation:
Correct option is
C
5
∫
−1
4
f(x)dx=4 and ∫
2
4
[3−f(x)dx=7]
F(4)−F(−1)=4 →(1)
and 3∣x∣
2
4
−[F(4)−F(2)]=7
[F(4)−F(2)]=6−7=−1
∴ F(4)−F(2)=−1→(2)
∫
−1
2
f(x)dx=F(2)−F(−1)→(3)
eqn.(1)-eqn.(2), we get F(2)−F(−1)=5
∴ ∫
−1
2
f(x)dx=
5
(put value in eqn.(3) )
Similar questions