Given that A= [0 1+2i ,-1+2i 0] show that
(1-A)(1+A)^(-1) is a unitary Matrix.
Answers
Answer:
1. Find the eigenvalues and corresponding eigenvectors of matrices(a)[1 14 1](b)−1 2 22 2 2−3−6−6Solution:(a) (1−λ)2−4 = 0⇒(λ−3)(λ+ 1) = 0⇒λ1= 3, λ2=−1. Also,v1= [ 1/2 1 ]T, v2=[−1/2 1 ]T.(b)λ1= 0, λ2=−2, λ3=−3 andv1= [ 0−1 1 ]T, v2= [−2 1 0 ]T, v3= [−1 0 1 ]T.2. Construct a basis ofR3consisting of eigenvectors of the following matrices(a)0 0 20 2 02 0 3(b)1 1−1−1 1 1−1 1 1.Solution:(a) Eigenvalues areλ1=−1, λ2= 2, λ3= 4 and eigenvectors arev1= [ 1 0−1/2 ]T,v2=[ 0 1 0 ]T,v3= [ 1 0 2 ]T. Since eigenvectors corresponding to different eigenvaluesarelinearly independent,{v1,v2,v3}is a basis ofR3.(b) Similar to (a).3.(T)This question deals with the following symmetric matrixA:A=1 0 10 1 -11 -1 0.One eigenvalue isλ= 1 with the line of eigenvectorsx= (c, c,0).(a) That line is the null space of what matrix constructed fromA?Solution:The eigenvectors ofλ= 1 makes the null space ofA−I.(b) Find the other two eigenvalues ofAand two corresponding eigenvectors.Solution:Ahas trace 2 and determinant−2. So the two eigenvalues afterλ1= 1 will addto 1 and multiply to−2. Those areλ2= 2 andλ3=−1. Corresponding eigenvectors are :v2=1-11, v3=1-1-2.
2(c) The diagonalizationA=SΛS−1has a specially nice form becauseA=At. Write all entriesin the three matrices in the nice symmetric diagonalizationofA.Solution:Every symmetric matrix has the nice formA=QΛQtwith an orthogonal matrixQ. The columns ofQare orthonormal eigenvectors.Q=1/√2 1/√3 1/√61/√2−1/√3−1/√601/√3−2/√6Λ =1 0 00 2 00 0
Step-by-step explanation: