Math, asked by PratyushPareek73431, 11 months ago

Given that alpha and beta are the roots of the equation x^2+3x-4=0. Find alpha^3+beta^2

Answers

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\alpha^{3}+\beta^{2}=17\:or\:-63}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {x}^{2} +3x-4 = 0 \\  \\  \tt: \implies  \alpha  \: and \:  \beta  \: are \: the \: zeores  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies  { \alpha }^{3}+  { \beta }^{2} = ?

• According to given question :

\bold{As \: we \: know \: that}  \\  \tt:  \implies  {x}^{2}  + 3x - 4 = 0 \\  \\ \tt:  \implies  {x}^{2}  +4x-x-4 = 0 \\  \\ \tt:  \implies x(x + 4) -1(x + 4) = 0 \\  \\ \tt:  \implies (x + 4)(x -1) = 0 \\  \\  \green{\tt:  \implies x =  1 \: and \:  - 4} \\  \\  \tt \circ \:  \alpha  =  1 \\  \\ \tt \circ \:   \beta  =  -4 \\  \\   \bold{For \: finding \: value : } \\ \tt :  \implies  \alpha^{3}  +  \beta^{2}  \\  \\ \tt :  \implies {1}^{3}+(-4)^{2}\\  \\  \green{\tt :  \implies  17} \\  \\   \green{\tt \therefore  \alpha^{3} +  \beta^{2}  = 17}

 \bold{If \:  \alpha  =  - 4 \: and \:  \beta  = 1} \\ \\   \tt:  \implies  { \alpha }^{3}  +  { \beta }^{2}  \\  \\ \tt:  \implies  { (- 4)}^{2}  +  {1}^{2}  \\  \\ \tt:  \implies  - 64 + 1 \\  \\  \green{\tt:  \implies - 63 }\\  \\   \green{\tt \therefore  { \alpha }^{3}  +{ \beta }^{2}  =  - 63}

Answered by Saby123
13

QUESTION :

Given that alpha and beta are the roots of the equation x^2+3x-4=0. Find alpha^3+beta^2.

SOLUTION :

 \begin{lgathered}\bold{Factorising \::-} \\ \tt: \implies {x}^{2} + 3x - 4 = 0 \\ \\ \tt: \implies {x}^{2} +4x-x-4 = 0 \\ \\ \tt: \implies x(x + 4) -1(x + 4) = 0 \\ \\ \tt: \implies (x + 4)(x -1) = 0 \\ \\ \orange{\tt: \implies x = 1 \: and \: - 4} \\ \\ \tt \circ \: \alpha = 1 \\ \\ \tt \circ \: \beta = -4 \\ \\ \bold{For \: finding \: value : } \\ \tt : \implies \alpha^{3} + \beta^{2} \\ \\ \tt : \implies {1}^{3}+(-4)^{2}\\ \\ \green{\tt : \implies 17} \\ \\ \purple{\tt \therefore \alpha^{3} + \beta^{2} = 17}\end{lgathered} </p><p>

 \begin{lgathered}\bold{If \: \alpha = - 4 \: and \: \beta = 1} \\ \\ \tt: \implies { \alpha }^{3} + { \beta }^{2} \\ \\ \tt: \implies { (- 4)}^{2} + {1}^{2} \\ \\ \tt: \implies - 64 + 1 \\ \\ \pink{\tt: \implies - 63 }\\ \\ \blue{\tt \therefore { \alpha }^{3} +{ \beta }^{2} = - 63}\end{lgathered}

Similar questions