Given that cos^ 2 theta-sin^ 2 theta= 3/4 . What is the value of cos theta?
A. (sqrt(3))/2
B. 1/2
C. (sqrt(7))/2
D. (sqrt(7))/(sqrt(8)) ن
Answers
Option (D)
Step-by-step explanation:
Given :-
cos² θ - sin² θ = 3/4
To find :-
Value of cos θ
Solution :-
Given that
cos² θ - sin² θ = 3/4
We know that
sin² θ + cos² θ = 1
=> sin² θ = 1 - cos² θ
Now,
cos² θ - ( 1 - cos² θ ) = 3/4
=> cos² θ - 1 + cos² θ = 3/4
=> 2 cos² θ - 1 = 3/4
=> 2 cos² θ = (3/4) + 1
=> 2 cos² θ = (3+4)/4
=> 2 cos² θ = 7/4
=> cos² θ = (7/4)/2
=> cos² θ = 7/(4×2)
=> cos² θ = 7/8
=> cos θ = √(7/8)
Therefore, cos θ = √(7/8)
Used formulae:-
→ sin² θ + cos² θ = 1
Step-by-step explanation:
Option (D)
Step-by-step explanation:
Given :-
cos² θ - sin² θ = 3/4
To find :-
Value of cos θ
Solution :-
Given that
cos² θ - sin² θ = 3/4
We know that
sin² θ + cos² θ = 1
=> sin² θ = 1 - cos² θ
Now,
cos² θ - ( 1 - cos² θ ) = 3/4
=> cos² θ - 1 + cos² θ = 3/4
=> 2 cos² θ - 1 = 3/4
=> 2 cos² θ = (3/4) + 1
=> 2 cos² θ = (3+4)/4
=> 2 cos² θ = 7/4
=> cos² θ = (7/4)/2
=> cos² θ = 7/(4×2)
=> cos² θ = 7/8
=> cos θ = √(7/8)
Therefore, cos θ = √(7/8)
Used formulae:-
→ sin² θ + cos² θ = 1