Math, asked by brainly7344, 9 months ago

given that cos theta=m/n and then tan theta is equal to.....
answer the this quickly please..... ​

Answers

Answered by Mysterioushine
26

GIVEN :-

  • Cosθ = m/n

TO FIND :-

  • Tanθ

SOLUTION :-

 \sf { \cos \theta =  \frac{m}{n}  =  \dfrac{adjacent \: side}{hypotenuse} }

Let us assume a rightangled ΔABC and θ is at C Then

  • AB = m

  • BC = n

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\linethickness{1.25}\put(0,0){\line(1,0){4}}\put(0,0){\line(4,3){4}}\put(4,0){\line(0,1){3}}\put(0,-0.5){C}\put(4,-0.5){B}\put(4,3.25){A}\put(3.66,0){\line(0,1){0.3}}\put(3.65,0.32){\line(1,0){0.35}}\put(2,-0.5){m}\put(4.25,1.5){\:}\put(2.1,1.9){n}\put(5,1){\boxed{\bf @renuka1612}}\end{picture}

 \\  \sf (AC) {}^{2}  = (AB) {}^{2}  + (BC) {}^{2} \:  [pythogoreas \: theorem] \\  \\  \implies \sf \:  {n}^{2}  =  {m}^{2} + (BC) {}^{2}  \\  \\  \implies \sf \:   {n}^{2}  -  {m}^{2}  = (BC) {}^{2}  \\  \\  \implies  {\bold {\boxed{\sf {\pink{(BC) =  \sqrt{n {}^{2}  - m {}^{2} } }}}}}

 \sf \sin \theta =  \frac{opposite \: side}{hypotenuse}  =  \frac{BC}{AC}  =  \frac{ \sqrt{ {n}^{2}  -  {m}^{2} } }{n}  \\  \\ \sf  \tan\theta =  \frac{ \sin \theta}{ \cos\theta }  =  \frac{  \frac{ \sqrt{ {n}^{2} -  {m}^{2}  } }{ \cancel{n}}  }{ \frac{m}{ \cancel{n}} }  =  \frac{ \sqrt{ {n}^{2}  - m {}^{2} } }{m}

 \therefore \sf \tan \theta  =  \frac{ \sqrt{ {n}^{2}  -  {m}^{2} } }{m}

ADDITIONAL INFO :-

(1) \sf \cosec\theta =   \dfrac{1}{\sin \theta} \\  \\ (2) \sf  \: \cot \theta =  \frac{1}{ \tan \theta}  \\  \\ (3) \sf  \: \sec\theta =  \frac{1}{ \cos \theta}

Similar questions