Given that:-
sinθ 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
Answers
Answered by
11
HEY!!
___________________________
✴(sinθ + 2cosθ)^2 = 12
✴(sinθ + 2cosθ)^2 + (2sinθ – cosθ)^2 = 1 + (2sinθ – cosθ)^2
✴5sin^2θ + 5cos^2θ = 1 + (2sinθ – cosθ)^2
✴5 - 1 = (2sinθ – cosθ)^2
✴root4 = 2sinθ – cosθ
✔2sinθ – cosθ = 2.
___________________________
✴(sinθ + 2cosθ)^2 = 12
✴(sinθ + 2cosθ)^2 + (2sinθ – cosθ)^2 = 1 + (2sinθ – cosθ)^2
✴5sin^2θ + 5cos^2θ = 1 + (2sinθ – cosθ)^2
✴5 - 1 = (2sinθ – cosθ)^2
✴root4 = 2sinθ – cosθ
✔2sinθ – cosθ = 2.
kishanswaroopya:
you did nicely. pls do it briefly.
Answered by
8
Note: I am writing theta as A.
= > Given Equation is sinA + 2cosA = 1
= > sinA + cosA + cosA = 1
= > sinA + cosA = 1 - cosA
On Squaring both sides, we get
= > (sinA + cosA)^2 = (1 - cosA)^2
= > sin^2A + cos^2A + 2sinAcosA = 1 + cos^2A - 2cosA
= > 1 + 2sinAcosA = 1 + cos^2A - 2cosA
= > 2sinAcosA - cos^2A = -2cosA
= > cosA(2sinA - cosA) = -2cosA
= > 2sinA - cosA = -2cosA/cosA
= > 2sinA - cosA = -2
Hope this helps!
= > Given Equation is sinA + 2cosA = 1
= > sinA + cosA + cosA = 1
= > sinA + cosA = 1 - cosA
On Squaring both sides, we get
= > (sinA + cosA)^2 = (1 - cosA)^2
= > sin^2A + cos^2A + 2sinAcosA = 1 + cos^2A - 2cosA
= > 1 + 2sinAcosA = 1 + cos^2A - 2cosA
= > 2sinAcosA - cos^2A = -2cosA
= > cosA(2sinA - cosA) = -2cosA
= > 2sinA - cosA = -2cosA/cosA
= > 2sinA - cosA = -2
Hope this helps!
Similar questions