Given that sin(a+b)=sinacosb+cosasinb find the value of sin75
Answers
Answered by
298
Sin 75 = Sin (30 + 45)
= Sin 30 Cos 45 + Sin 45 Cos 30
= (1 / 2) (1 / root2) + (1 / root2) (root3 / 2)
= (1 / 2 root2) + (root 3 / 2 root2)
= (1 + root3) / 2 root2
On rationalising :-
(1 + root3) (2 root2) / (2 root2) (2 root2)
(2 root2 + 2 root6) / 8
2 (root2 + root6) / 8
(root2 + root6) / 4
Therefore Sin75 = (root2 + root6) / 4
= Sin 30 Cos 45 + Sin 45 Cos 30
= (1 / 2) (1 / root2) + (1 / root2) (root3 / 2)
= (1 / 2 root2) + (root 3 / 2 root2)
= (1 + root3) / 2 root2
On rationalising :-
(1 + root3) (2 root2) / (2 root2) (2 root2)
(2 root2 + 2 root6) / 8
2 (root2 + root6) / 8
(root2 + root6) / 4
Therefore Sin75 = (root2 + root6) / 4
Answered by
53
Answer:sin 75 =√2+√6/4
Step-by-step explanation:
Sin(75)=sin(30+45)
On comparing,sin(45+30)=sin(a+b)
Putting values,
Sin(45+30)=sin45*cos30+cos45*sin30
-> 1/√2*√3/2+ 1/√2*1/2
-> √3/2√2 + 1/2√2
-> √3 +1 / 2√2
-> √3 +1/2√2 *√2/√2 (rationalising denominator)
-> √6+√2/4
Thank You
Similar questions