Math, asked by raghavgowda6705, 3 days ago

given that sin theata = a/b' then tan theata is ​

Answers

Answered by MathHacker001
11

\large\bf\underline\red{Answer  \: :-}

Given :

\sf{ \sin \theta =  \frac{a}{b} } \\

To find :

tan θ

Now,

We know that

tan θ = sin θ / cos θ

Now we find cos θ

\sf\longrightarrow{ \cos \theta =  \sqrt{1 -  \sin {}^{2} \theta  }  } \\  \\ \sf\longrightarrow{ \cos \theta =  \sqrt{1 -  \frac{a {}^{2} }{b {}^{2} } } } \:  \:  \:  \\  \\ \sf\longrightarrow{ \cos \theta =  \sqrt{ \frac{b {}^{2} - a  {}^{2} }{b {}^{2} } }  } \:  \\  \\ \sf\longrightarrow{ \cos \theta =  \sqrt{ \frac{b {}^{2} - a {}^{2}  }{b} } }

Now,

\sf\bigstar{ \:  \tan \theta =  \frac{ \sin \theta }{ \cos \theta }  } \\

Finding tan theta

\sf\longrightarrow{ \tan \theta =  \frac{a/b}{ \sqrt{ \frac{b {}^{2} - a {}^{2}  }{b} } }  }  \:  \:  \:  \: \\  \\  \\ \sf\longrightarrow \pink{ \tan \theta =  \frac{a}{  \sqrt{b {}^{2}  - a {}^{2} }  }  }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Trigonometry table :-

\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}

Similar questions