Math, asked by saush14, 4 months ago


Given that
a + b = 10
and
a {}^{2}  - b {}^{2}  = 40
, find the value of
a - b

Answers

Answered by tennetiraj86
3

Step-by-step explanation:

Given:-

a+b=10

a^2-b^2=40

To find:-

Find the value of a-b?

Solution:-

Given that:

a+b=10----(1)

a^2-b^2=40

=>(a+b)(a-b)=40

=>10(a-b)=40 (from(1))

=>a-b=40/10

Therefore,a-b=4

Answer:-

The value of a-b=4

Used formula:-

  • (a+b)(a-b)=a^2-b^2
Answered by mathdude500
1

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{a + b = 10} \\ &\sf{ {a}^{2} -  {b}^{2} = 40  } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{value \: of \: a - b}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  Identity  \: used :-  \begin{cases} &\tt{ {x}^{2} -  {y}^{2}  = (x + y)(x - y) }  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

\begin{gathered}\tt\red{According \: to \: statement}\end{gathered}

 \tt \:  ⟼  \:  {a}^{2}  -  {b}^{2}  = 40

 \tt \:  :  \: ⟼ (a + b)(a - b) = 40

 \tt \:  :  \: ⟼ 10 \times (a - b) = 40

 \tt \:  :  \: ⟼ a - b \:  = \dfrac{ \cancel{40}}{ \cancel{10}}  \: 4

\bf\implies \:a \:  -  \: b \:  = 4

Similar questions