Physics, asked by dhaniram66, 1 year ago

given that a \: sinB + b \: sinB = c \: . prove:
 = > ({a \: cosB - b \: sinB}) = \sqrt{ {a}^{2} + {b}^{2} - {c}^{2}.}

Answers

Answered by kritanshu
0

Solution:

It is given that a \: sinB + b \: sinB = c \:

a \: sinB + b \: sinB = c \: (given)

Squaring both sides,

So, \: {(a \: sinB + b \: sinB) }^{2} = {c}^{2} .

 = > {a}^{2} {sin}^{2} B + {b}^{2} {sin}^{2} B + 2ab \: sinB \: cosB = {c}^{2}

 = > {a}^{2} (1 - {cos}^{2} B) + {b}^{2} (1 - {sin}^{2} B) + 2ab \: sinB \: cosB = {c}^{2}

 = > {a}^{2} - {a}^{2} {cos}^{2} + {b}^{2}\: - {b}^{2} {sin}^{2} B + 2ab \: sinB \: cosB = {c}^{2}

 = > {a}^{2} {cos}^{2} B - 2ab \: sinB \: cosB \: + {b}^{2} {sin}^{2} B= {a}^{2} + {b}^{2} - {c}^{2}. \:

 = > ({a \: cosB - b \: sinB})^{2} = {a}^{2} + {b}^{2} - {c}^{2}

 = > ({a \: cosB - b \: sinB}) = \sqrt{ {a}^{2} + {b}^{2} - {c}^{2}.}

Hence, it is proved.

Answered by Niraliii
0

Hey !!

Refer to attachment ^^

=>

Attachments:
Similar questions