Math, asked by SmartCore, 2 months ago

Given that the events A and B are such that P(A) = 1/2, P (A ∪ B) = 3/5, and P(B) = p. Find p if they are

(i) mutually exclusive

(ii) independent

Need Quality Answers only✔
Dont Spam ✖


Answers

Answered by shadowsabers03
56

(i) If A and B are mutually exclusive, then,

\displaystyle\longrightarrow A\cap B=\phi

\displaystyle\Longrightarrow P(A\cap B)=0

We have,

\displaystyle\small\text{$\longrightarrow P(A\cap B)=P(A)+P(B)-P(A\cup B)\quad\quad\dots(1)$}

Then,

\displaystyle\longrightarrow 0=\dfrac{1}{2}+p-\dfrac{3}{5}

\displaystyle\longrightarrow 0=p-\dfrac{1}{10}

\displaystyle\longrightarrow\underline{\underline{p=\dfrac{1}{10}}}

(ii) If A and B are independent, then,

\displaystyle\longrightarrow P(A\mid B)=P(A)

\displaystyle\longrightarrow\dfrac{P(A\cap B)}{P(B)}=P(A)

\displaystyle\longrightarrow P(A\cap B)=P(A)\cdot P(B)

\displaystyle\longrightarrow P(A\cap B)=\dfrac {p}{2}

Then in (1),

\displaystyle\longrightarrow\dfrac{p}{2}=\dfrac{1}{2}+p-\dfrac{3}{5}

\displaystyle\longrightarrow\dfrac{p}{2}=p-\dfrac{1}{10}

\displaystyle\longrightarrow p-\dfrac{p}{2}=\dfrac{1}{10}

\displaystyle\longrightarrow\dfrac{p}{2}=\dfrac{1}{10}

\displaystyle\longrightarrow\underline{\underline{p=\dfrac{1}{5}}}

Answered by Anonymous
27

Given :-

The events A and B are such that P(A) = 1/2, P (A ∪ B) = 3/5, and P(B) = p.

To Find :-

Find p if they are

(i) mutually exclusive

(ii) independent

Solution :-

For mutually exclusive

\sf \dfrac{3}{5} = \dfrac{1}{2} + p-0

\sf \dfrac{3}{5} = \dfrac{1}{2} + p

\sf p =\dfrac{3}{5} - \dfrac{1}2

\sf p = \dfrac{6 - 5}{10}

\sf p = \dfrac{1}{10}

For independent

According to the question

\sf P(A) \times P(B)

\sf\dfrac{1}{2}\times p

\sf \dfrac{p}{2}

Now

\sf \dfrac{3}{5} -\dfrac{1}{2}=p-\dfrac{p}{2}

\sf\dfrac{6-5}{10}=\dfrac{2p-p}{2}

\sf\dfrac{1}{10}=\dfrac{p}{2}

\sf 10p=2

\sf\dfrac{2}{10}=\dfrac{1}{5}

Similar questions