given that vector A + vector b + vector C is equal to zero out of three vectors two equal in magnitude and the magnitude of the third vector is root 2 times that of either of the two vectors having equal magnitude then the angle between vector are given by
Answers
Answer:
90° , 135° & 135°
Step-by-step explanation:
Let say magnitude of A & B = Equal M
C = M√2
ACosA + BcosB + C CosC = 0
McosA + MCosB + M√2CosC = 0
McosA + MCosB = -M√2CosC
Squaring both sides
M²cos²A + M²Cos²B + 2M²cosACosB= 2M²Cos²C
AsinA + BSinB + C SinC = 0
MSinA + MSinB + M√2SinC = 0
M²Sin²A + M²Sin²B + 2M²SinASinB= 2M²Sin²C
Adding both
M² + M² + 2M²(cosACosB + SinASinB) = 2M²
=> cosACosB + SinASinB = 0
=> Cos(A-B) = 0
=> A - B = 90°
Angle between A & B = 90°
M²Sin²A + M²Sin²B + 2M²SinASinB= 2M²Sin²C
=> M²Sin²(90 + B) + M²Sin²B + 2M²Sin(90 + B)SinB= 2M²Sin²C
Sin(90 + B) = CosB
=> M²Cos²B + M²Sin²B + 2M²CosBSinB= 2M²Sin²C
=> M² + M²Sin2B = 2M²Sin²C
=> M²Sin2B = M²(2sin²C - 1)
=> M²Sin2B = - M²Cos2C
=> Sin2B = -Cos2C
=> -Sin2B = Cos(2C)
=> Sin(-2B) = Cos2C
=> Cos(90 + 2B) = Cos2C
=>2B + 90 = 2C
=> 2(90 + A) + 90 = 2C
=> 270 = 2(C - A)
=> C - A = 135°
Angle between C & A = 135°