GIVEN THAT X-ROOT 5 IS A FACTOR OF THE CUBIC POLYNOMIAL X3 -3 ROOT 5 X2+13 X -3 ROOT 5 FIND ALL THE ZEROES OF THE POLYNOMIAL
Answers
Answered by
104
Given that x-√5 is a factor of x³-3√5x²+13x-3√5 = 0 --- f(x)
So, f(x-√5) = 0
x-√5) x³-3√5x²+13x-3√5 (x²-2√5x+3
x³-√5x²
- +
________________
0 - 2√5x²+13x-3√5
- 2√5x²+10x
+ -
________________
0 +3x-3√5
3x-3√5
- -
_____________
0
So, x²-2√5x+3 is also a factor of f(x)
So,
x²-2√5x+3=0
here a=1, b = -2√5, c=3
Roots Δ = [-b +or- √b²-4ac] ÷ 2a
= [2√5 +or- √{(2√5)²-4(1)(3)}] ÷ 2
= [2√5 +or- √(4x5 -4x3)] ÷ 2
= [2√5 +or- √{4(5-3)}] ÷ 2
= [2√5 +or- 2√2] ÷ 2
= 2 [√5 +or- √2] ÷ 2
= √5 + or - √2
So the other roots are √5 + √2, √5 - √2
So, f(x-√5) = 0
x-√5) x³-3√5x²+13x-3√5 (x²-2√5x+3
x³-√5x²
- +
________________
0 - 2√5x²+13x-3√5
- 2√5x²+10x
+ -
________________
0 +3x-3√5
3x-3√5
- -
_____________
0
So, x²-2√5x+3 is also a factor of f(x)
So,
x²-2√5x+3=0
here a=1, b = -2√5, c=3
Roots Δ = [-b +or- √b²-4ac] ÷ 2a
= [2√5 +or- √{(2√5)²-4(1)(3)}] ÷ 2
= [2√5 +or- √(4x5 -4x3)] ÷ 2
= [2√5 +or- √{4(5-3)}] ÷ 2
= [2√5 +or- 2√2] ÷ 2
= 2 [√5 +or- √2] ÷ 2
= √5 + or - √2
So the other roots are √5 + √2, √5 - √2
Answered by
25
x-√5 is a factor of polynomial x³-3√5x²+13x-3√5
By Long decision in the ❗attachment❗
Quotient
→x²-2√5x+3
→D=b²-4ac
→D=(-2√5)²-4(1)(3)
→D=20-12
→D=8
zeroes are⤵⤵
x=
-b±√D
_______
.2a.
x=
-(-2√5)±2√2
___________
.2a.
x=
2(√5±√2)
_________
.2(1).
x=√5±√2
zeroes are √5+√2 @nd √5-√2
hope it helps ______ with regards ====== SnehaG☑
By Long decision in the ❗attachment❗
Quotient
→x²-2√5x+3
→D=b²-4ac
→D=(-2√5)²-4(1)(3)
→D=20-12
→D=8
zeroes are⤵⤵
x=
-b±√D
_______
.2a.
x=
-(-2√5)±2√2
___________
.2a.
x=
2(√5±√2)
_________
.2(1).
x=√5±√2
zeroes are √5+√2 @nd √5-√2
hope it helps ______ with regards ====== SnehaG☑
Attachments:
Similar questions