Math, asked by neerajbhardwaj2606, 6 months ago


Given the lines of regression as 2x-9y+6= 0 and x-2y+1 =0
Which statement is correct? (1 mark)
OPTIONS
The Value Of correlation coefficient r= 3/2
The Value Of correlation coefficient r= 1/2
The Value Of correlation coefficient r= 974
The Value Of correlation coefficient r= 2/3​

Answers

Answered by krishnaanandsynergy
1

Answer:

Using the given lines of regression 2x-9y+6= 0 and x-2y+1 =0. we can find the value of correlation coefficient (r). from the given options, the correct answer: Option d: The value of correlation coefficient r= \frac{2}{3}.

Step-by-step explanation:

From the given question,

                    2x-9y+6= 0 --------------(1)

                      x-2y+1 =0 --------------(2)

Formula for coefficient of correlation(r) =\sqrt{b_{yx}*b_{xy}  }

For find the value of b_{yx}, we should consider the first equation(1).

From equation (1), the regression line of y on x is,

2x-9y+6= 0  →       -9y=(-2x-6)

                                   -9y=-(2x+6)

cancel the minus(-) in both sides. It can be written as,

                                     9y=2x+6

                                       y=\frac{2}{9} x+\frac{6}{9}

The value of b_{yx} is the coefficient of x.

                               ∴   b_{yx}=\frac{2}{9}

Similarly, we should find the value of b_{xy}, we should consider the second equation(2).

From equation (2), the regression line of x on y is,

x-2y+1 =0   →            x=2y-1

The value of b_{xy} is the coefficient of y.

                               ∴   b_{xy}=2

Now we can find the coefficient of correlation(r).

                                        r=\sqrt{b_{yx}*b_{xy}  }

                                          =\sqrt{\frac{2}{9} *2 }

                                          =\sqrt{\frac{4}{9}  }

                                       r=\frac{2}{3}

Final Answer:

Option d: The value of correlation coefficient r= \frac{2}{3}.

Similar questions