Math, asked by mughalafzal949, 1 month ago

given the points (-4,8) and (6,-12) : determine the midpoint of the line segment connecting the points​

Answers

Answered by FiercePrince
24

Given that, The Co-ordinates of endpoints of line are (-4 , 8 ) and  ( 6 , -12 ) .

Need To Find : Midpoint of the given endpoints of the line  ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ \sf Let's \:say \:that \:\pmb{\bf (x_m \:,\:y_m ) }\:be \:the \:midpoint \:of \: line \:segment .\:\\

Given that ,

⠀⠀⠀⠀▪︎ ⠀The Co-ordinates of endpoints of line are (-4, 8 ) and ( 6 , -12 ) .

\qquad \dashrightarrow \sf \:( \: x_1 \:,\: y_1 \:) \:=\: ( \:-4\:,\:8\:)\:\\\\

⠀⠀⠀⠀⠀&,

\qquad \dashrightarrow \sf \:( \: x_2\:, \: y_2 \:) \:=\: ( \:6\:,\:-12\:)\:\\\\

Here ,

  • x₁ = -4

  • x₂ = 6

  • y₁ = 8

  • y₂ = -12

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀¤ Formula for Midpoint is given by :

\qquad \dag \:\:\:\:\underline {\boxed {\frak { \:\:\:Midpoint \:\:=\:\: \Bigg( \dfrac{(x_1 + x_2 )}{2} \:\:,\:\: \dfrac{(y_1 + y_2 )}{2}\:\:\Bigg)}}}\\\\

⠀⠀⠀⠀⠀⠀Here ,x₁ & x₂ are the Co-ordinates of x- axis  ,  y₁ & y₂ are the Co-ordinates of y - axis .

\qquad:\implies \sf ( x_m \:,\: y_m) \:=\: \Bigg( \dfrac{(x_1 + x_2 )}{2} \:\:,\:\: \dfrac{(y_1 + y_2 )}{2}\:\:\Bigg) \:\\\\\qquad:\implies \sf ( x_m \:,\: y_m) \:=\: \Bigg(\dfrac{\{ (-4) + 6 \} }{2} \:\:,\:\: \dfrac{\{  8  + (-12) \} }{2}\:\:\Bigg)\:\\\\\qquad:\implies \sf ( x_m \:,\: y_m) \:=\: \Bigg(\dfrac{\{  -4 + 6 \} }{2} \:\:,\:\: \dfrac{\{  8  - 12 \} }{2}\:\:\Bigg)\:\\\\ \qquad:\implies \sf ( x_m \:,\: y_m) \:=\: \Bigg(\dfrac{\{  2 \} }{2} \:\:,\:\: \dfrac{\{  -4 \} }{2}\:\:\Bigg)\:\\\\ \qquad:\implies \sf ( x_m \:,\: y_m) \:=\: \Bigg(\dfrac{  2 }{2} \:\:,\:\: \dfrac{  -4 }{2}\:\:\Bigg)\:\\\\\qquad:\implies \underline {\boxed{\frak {( x_m \:,\: y_m) \:=\: ( 1 \:\:,\:\:-2\:\:) \:}}}\\\\

\qquad \therefore \underline {\sf Hence, \:Midpoint \:of \:line \:  segment \:is \:\pmb{\bf ( \:1\:,\:-2\:)\:}\:.}\\\\

Similar questions