Physics, asked by redeatakliluandinet3, 5 months ago

Given two vectors A = 5i + 6j + 8k and

B= 3i + 4j. What is the scalar projection of A
on B?

Answers

Answered by Anonymous
6

EXPLANATION

>>Given Vectors :

 \circ \:  \:  \:  \:  \sf \vec{A} = 5 \hat{i} + 6 \hat{j} + 8 \hat{k}

 \circ \:  \:  \:  \:  \sf\vec{B} = 3 \hat{i} + 4 \hat{j}

___________________

~Formula

 \sf :  \to \vec{A}. \vec{B} =  |A|  |B|  \sin \phi

>>Scalar Product :

 \mapsto\sf \vec{A} .\sf\vec{B} = (5 \hat{i} + 6 \hat{j} + 8 \hat{k})( 3 \hat{i} + 4 \hat{j})

 \sf \mapsto \vec{A} . \vec{B} = (5 \hat{i} \: . \: 3 \hat{i} \:  +  \: 5 \hat{i} \: . \: 4 \hat{j}) + (6 \hat{j} \: . \: 3 \hat{i} \:  +  \: 6\hat{j} \: . \: 4 \hat{j}) + (8 \hat{k} \: . \: 3 \hat{i} \:  +  \: 8 \hat{k} \: . \: 4 \hat{j})

 \mapsto \sf \vec{A}. \vec{B} = (0 + 20) + (24 + 0) + (24 + 32)   \\

 \: \therefore \:   { \underline{ \boxed{ \sf \vec{A}. \vec{B} = 100}}}

_____________

@StayHigh

Similar questions