Math, asked by jjjj19, 1 year ago

Given (x+y)=13 and xy=22. Find the value of x2+y2​

Answers

Answered by monus1904
24
Method (I)- x+y=13 and xy=22

It means :- x=11 , y=2

Now for x^2 + y^2 = (11)^2 + (2)^2 = 121+4 = 125

.

.

.

Hope you get it....Comment me if you want a different solution and thank me too pls...
Method (II)- x^2+y^2 + 2xy = 169
x^2+y^2 = 169 - 2×22
x^2+y^2 = 169 - 44
x^2+y^2 = 125
.
.
Mark as Brainliest answer plsss.....

monus1904: check I solved in another method....
jjjj19: Thanks
sagarmankoti: welcome
jjjj19: Thank you both
Answered by sagarmankoti
26

We \: know \: that \:  {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}  \\  \\    \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   {x}^{2}  + 2xy +  {y}^{2}  =  {(x + y)}^{2}  \\  =  >  {x }^{2}   + 2(22) +  {y}^{2}  =  {(13)}^{2}  \\  =  > \:  \:  \:  \:  \:  \:   {x  }^{2}  +  {y}^{2}  + 44 = 169 \\  =  > \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   {x}^{2}  +  {y}^{2}  = 169 - 44 \\ =  >  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    {x}^{2}  +  {y}^{2}  = 125


monus1904: How to write x square....
jjjj19: x^
monus1904: no...I asked that person who solved it after me....
jjjj19: ok
sagarmankoti: [tex][/tex]
sagarmankoti: {$}^{$} write this between the tag above
monus1904: O... thanks
sagarmankoti: $= number or variable
Answered by sagarmankoti
15

We \: know \: that \:  {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}  \\  \\    \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   {x}^{2}  + 2xy +  {y}^{2}  =  {(x + y)}^{2}  \\  =  >  {x }^{2}   + 2(22) +  {y}^{2}  =  {(13)}^{2}  \\  =  > \:  \:  \:  \:  \:  \:   {x  }^{2}  +  {y}^{2}  + 44 = 169 \\  =  > \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   {x}^{2}  +  {y}^{2}  = 169 - 44 \\ =  >  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    {x}^{2}  +  {y}^{2}  = 125


jjjj19: ok thanks
Similar questions