givenA=B=45 show that sin(A-B)=sin A .cos B-cos A.sinB
Answers
Answered by
1
Step-by-step explanation:
L.H.S=
R.H.S=
therefore L.S.H=R.H.S
Answered by
1
Answer:
Given,
A = B = 45°
Now,
sin(A + B) = sinA cosB + cosA sinB
Substituting A = 45 , B = 45 °
sin( 45 + 45 ) = sin45 cos45 + cos45 sin45
sin90 = sin45 cos45 + cos45 sin45
We know, Trigonometry ratios of particular angles : sin90 = 1 , cos45 = 1/√2 , sin45 = 1/√2
1 = 1/√2 ( 1/√2 ) + 1/√2 ( 1/√2)
1 = 1/2 + 1/2
1 = 1 .
Both Sides of the equation are equal.
Hence, We proved and verified that sin (A+B)= sin A cos B + cos A sin B holds good for A = B = 45°
Similar questions