Math, asked by sahilpreetkaur1, 10 months ago

givenA=B=45 show that sin(A-B)=sin A .cos B-cos A.sinB​

Answers

Answered by sikandar8629
1

Step-by-step explanation:

L.H.S=

 \sin(A - B)  =  \sin(45 - 45)  =  \sin(0 )

 \sin(0)  = 0

R.H.S=

 \sin(A) . \cos(B)  -  \sin(B) . \cos(A)

 \sin(45) . \cos(45)  -  \sin(45) . \cos(45)

 \frac{1}{ \sqrt{2} } . \frac{1}{ \sqrt{2} }  -  \frac{1}{ \sqrt{2} } . \frac{1}{ \sqrt{2} }  = 0

therefore L.S.H=R.H.S

Answered by vishwajeetmishra670
1

Answer:

Given,

A = B = 45°

Now,

sin(A + B) = sinA cosB + cosA sinB

Substituting A = 45 , B = 45 °

sin( 45 + 45 ) = sin45 cos45 + cos45 sin45

sin90 = sin45 cos45 + cos45 sin45

We know, Trigonometry ratios of particular angles : sin90 = 1 , cos45 = 1/√2 , sin45 = 1/√2

1 = 1/√2 ( 1/√2 ) + 1/√2 ( 1/√2)

1 = 1/2 + 1/2

1 = 1 .

Both Sides of the equation are equal.

Hence, We proved and verified that sin (A+B)= sin A cos B + cos A sin B holds good for A = B = 45°

Similar questions