Chemistry, asked by kritika57811, 1 year ago

Glittering of old metal vessel

Answers

Answered by anushka33314
23

Answer: the following is the measures of glittering a metal:

Metals are substances that glitter and shine when polished. This is the properties of metals. In industrial sector, metals are generally polished making use of electrolysis methods that basically involve making use of electrodes and electric power supply.

• In lab, this method can be useful to certain extent only of polishing smaller pieces or strips of metals.

• Another most effective way to polish metals in lab is to try and make use of sand paper. The paper can be used to polish and scrub the metal surface that is tarnished with oxides.

• The process has to be performed gently so that the surface of the metal strip or your hand does not get injured.

• You can also try and make use of liquid polish or metal polishing chemicals that are not very much harsh for your hand.

Answered by JENNY2007
11

Answer:

A metal (from Greek μέταλλον métallon, "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typically malleable (they can be hammered into thin sheets) or ductile (can be drawn into wires). A metal may be a chemical element such as iron; an alloy such as stainless steel; or a molecular compound such as polymeric sulfur nitride.

Iron, shown here as fragments and a 1 cm3 cube, is an example of a chemical element that is a metal.

A metal in the form of a gravy boat made from stainless steel, an alloy largely composed of iron, carbon, and chromium

In physics, a metal is generally regarded as any substance capable of conducting electricity at a temperature of absolute zero.[1] Many elements and compounds that are not normally classified as metals become metallic under high pressures. For example, the nonmetal iodine gradually becomes a metal at a pressure of between 40 and 170 thousand times atmospheric pressure. Equally, some materials regarded as metals can become nonmetals. Sodium, for example, becomes a nonmetal at pressure of just under two million times atmospheric pressure.

In chemistry, two elements that would otherwise qualify (in physics) as brittle metals—arsenic and antimony—are commonly instead recognised as metalloids due to their chemistry (predominately non-metallic for arsenic, and balanced between metallicity and nonmetallicity for antimony). Around 95 of the 118 elements in the periodic table are metals (or are likely to be such). The number is inexact as the boundaries between metals, nonmetals, and metalloids fluctuate slightly due to a lack of universally accepted definitions of the categories involved.

In astrophysics the term "metal" is cast more widely to refer to all chemical elements in a star that are heavier than the lightest two, hydrogen and helium, and not just traditional metals. In this sense the first four "metals" collecting in stellar cores through nucleosynthesis are carbon, nitrogen, oxygen, and neon, all of which are strictly non-metals in chemistry. A star fuses lighter atoms, mostly hydrogen and helium, into heavier atoms over its lifetime. Used in that sense, the metallicity of an astronomical object is the proportion of its matter made up of the heavier chemical elements.[2]

Metals, as chemical elements, comprise 25% of the Earth's crust and are present in many aspects of modern life. The strength and resilience of some metals has led to their frequent use in, for example, high-rise building and bridge construction, as well as most vehicles, many home appliances, tools, pipes, and railroad tracks. Precious metals were historically used as coinage, but in the modern era, coinage metals have extended to at least 23 of the chemical elements.[3]

The history of refined metals is thought to begin with the use of copper about 11,000 years ago. Gold, silver, iron (as meteoric iron), lead, and brass were likewise in use before the first known appearance of bronze in the 5th millennium BCE. Subsequent developments include the production of early forms of steel; the discovery of sodium—the first light metal—in 1809; the rise of modern alloy steels; and, since the end of World War II, the development of more sophisticated alloys.

Similar questions