Good afternoon Friends,
Plz, answer my question
If sec theta + tan theta = m, show that ( m² - 1 )/( m² + 1 ) = sin theta .
Answers
Answered by
63
Hey there !!
▶ Prove that :-
If sec∅ + tan∅ = m, show that = sin²∅ .
▶ Solution :-
Given, sec∅ + tan∅ = m.
➡ Solving RHS,
We have
→ ( m² - 1 ) .
= ( sec∅ + tan∅ )² - 1.
= sec²∅ + tan²∅ + 2sec∅tan∅ - 1 .
= ( sec²∅ - 1 ) + tan²∅ + 2sec∅tan∅ .
= tan²∅ + tan²∅ + 2sec∅tan∅ .
= 2tan²∅ + 2sec∅tan∅ .
= 2tan∅( tan∅ + sec∅ ) ............(1).
→ ( m² + 1 ).
= ( sec∅ + tan∅ )² + 1.
= sec²∅ + tan²∅ + 2sec∅tan∅ + 1 .
= ( tan²∅ + 1 ) + sec²∅ + 2sec∅tan∅ .
= sec²∅ + sec²∅ + 2sec∅tan∅ .
= 2sec²∅ + 2sec∅tan∅ .
= 2sec∅( sec∅ + tan∅ ) ............(2).
▶Now,
=
✔✔ Hence, it is proved ✅✅.
____________________________________
THANKS
#BeBrainly.
▶ Prove that :-
If sec∅ + tan∅ = m, show that = sin²∅ .
▶ Solution :-
Given, sec∅ + tan∅ = m.
➡ Solving RHS,
We have
→ ( m² - 1 ) .
= ( sec∅ + tan∅ )² - 1.
= sec²∅ + tan²∅ + 2sec∅tan∅ - 1 .
= ( sec²∅ - 1 ) + tan²∅ + 2sec∅tan∅ .
= tan²∅ + tan²∅ + 2sec∅tan∅ .
= 2tan²∅ + 2sec∅tan∅ .
= 2tan∅( tan∅ + sec∅ ) ............(1).
→ ( m² + 1 ).
= ( sec∅ + tan∅ )² + 1.
= sec²∅ + tan²∅ + 2sec∅tan∅ + 1 .
= ( tan²∅ + 1 ) + sec²∅ + 2sec∅tan∅ .
= sec²∅ + sec²∅ + 2sec∅tan∅ .
= 2sec²∅ + 2sec∅tan∅ .
= 2sec∅( sec∅ + tan∅ ) ............(2).
▶Now,
=
✔✔ Hence, it is proved ✅✅.
____________________________________
THANKS
#BeBrainly.
Anonymous:
Nice
Answered by
46
[Note :- Q = theta]
secQ + tanQ = m
Squaring on both sides,
(secQ + tanQ)² = m²
sec²Q + tan²Q + 2 secQ tanQ = m²
Now,
[(m² - 1) ÷ (m² + 1)]
So,
(m² - 1) = [(sec²Q + tan²Q + 2 secQ tanQ) - 1]
= sec²Q + tan²Q + 2 secQ tanQ - 1
Now, sec²Q - 1 = tan²Q
So,
= tan²Q + tan²Q + 2 secQ tanQ
= 2 tan²Q + 2 secQ tanQ
= 2 tanQ (tanQ + secQ) .......(A)
And
(m² + 1) = [(sec²Q + tan²Q + 2 secQ tanQ) + 1]
= sec²Q + tan²Q + 2 secQ tanQ + 1
= sec²Q + sec²Q - 1 + 2 secQ tanQ + 1
As,
sec²Q - 1 = tan²Q
= 2 sec²Q + 2 secQ tanQ
= 2 secQ (secQ + tanQ) .......(B)
Now;
[(m² - 1) ÷ (m² + 1)]
= [2 tanQ (secQ + tanQ) ÷ 2 secQ (secQ + tanQ)]
= [2 tanQ ÷ 2 secQ]
= (tanQ ÷ secQ)
Now,
tanQ = (sinQ ÷ cosQ)
and sin Q = (1 ÷ cosQ)
So,
[(sinQ ÷ cosQ) ÷ (1 ÷ cosQ)]
= sinQ
L.H.S. = R.H.S
Hence, proved
__________________________________
___________________________________
Attachments:
Similar questions
English,
7 months ago
Social Sciences,
7 months ago
Chemistry,
7 months ago
English,
1 year ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago