Good Afternoon
Give the Answer in Attachment.
#Content Quality
#Good Answer Required
#Don't Spam ✖✖
Answers
Answer:
sin A / sin B = √3/2
⇒ sin²A / sin²B = 3/4
⇒ sin²A = 3/4 × sin²B -----(1)
cos A / cos B = √5/2
⇒ cos²A / cos²B = 5/4
⇒ cos²A = 5/4 cos²B ----(2)
We know that sin²A + cos²A = 1 and hence on adding (1) and (2) we get :
⇒ 3/4 cos²B + 5/4 sin²B = 1
⇒ 3 cos²B + 5 sin²B = 4
⇒ 3 ( 1 - sin²B ) + 5 sin²B = 4
⇒ 3 - 3 sin²B + 5 sin²B = 4
⇒ 3 + 2 sin²B = 4
⇒ 2 sin²B = 4 - 3
⇒ 2 sin²B = 1
⇒ sin²B = 1/2
⇒ sin B = 1/√2
So we put the value of sin B to get :
3/4 cos²B + 5/4 sin²B = 1
⇒ 3/4 cos²B + 5/4 × 1/2 = 1
⇒ 3/4 cos²B = 1 - 5/8
⇒ 3/4 cos²B = ( 8 - 5 ) / 8
⇒ 3/4 cos²B = 3/8
⇒ cos²B = 1/2
⇒ cos B = 1/√2
We know that tan B = sin B / cos B
⇒ tan B = 1/√2 / 1/√2
⇒ tan B = 1
Dividing equation (1) and equation (2) we get :-
sin²A / cos²A / sin²B / cos²B = 3/4 / 5/4
⇒ tan²A / tan²B = 3/5
⇒ tan A / tan B = √3/√5
We already found out that tan B = 1 ,
tan A = √3/√5
tan A + tan B = √3/√5 + 1
⇒ tan A + tan B = ( √3 + √5 ) / √5
Rationalize further to get :
⇒ tan A + tan B = √5/√5 × ( √3 + √5 ) / √5
⇒ tan A + tan B = ( √15 + 5 ) / 5
Thus the value is ( √15 + 5 ) / 5 .
ANSWER
Step By Step Explanation
Plz refer to the attachment for detailed answer given.
Remember
1)Sin A =
2)Cos A =
3)Tan A =
4)Sin A =
5)Cos A =
6)Tan A =
7) = 1
8) = 1
9) = 1
10)All values of trigonometric ratios or the trigonometric table are to be remembered.