Math, asked by Anonymous, 1 year ago

Good Evening Friends

Please solve the question !!!

CLASS -X
MATHS
CH - TRIGONOMETRY

❎ No Spamming ❎

Attachments:

kaustavgogoi: (Cosec theta-cot theta) ²
kaustavgogoi: =(1/sin theta-cos theta/sin theta) ²
kaustavgogoi: (1-cos theta/sin theta) ²
kaustavgogoi: (1-cos theta) ²/sin²theta

Answers

Answered by siddhartharao77
6

Here, I am writing θ as A for better understanding!.

=>Given:\frac{1-cosA}{1+cosA}

=>\frac{1-cosA}{1+cosA}*\frac{1-cosA}{1-cosA}

=>\frac{(1-cosA)^2}{1^2-cos^2A}

=>\frac{1+cos^2A-2cosA}{1-cos^2A}

=>\frac{1+cos^2A-2cosA}{sin^2A}

=>\frac{1}{sin^2A}+\frac{cos^2A}{sin^2A}-\frac{2cosA}{sin^2A}

=>cosec^2A+cot^2A-\frac{2}{sinA}* \frac{cosA}{sinA}

=>cosec^2A+cot^2A-2cosecAcotA

=>\boxed{(cosecA-cotA)^2}


Hope it helps!


Anonymous: thank you so much
siddhartharao77: Most welcome
Answered by Siddharta7
2

Given Equation is (1 - cosθ)/(1+cosθ)

On rationalizing, we get

⇒ (1 - cosθ/1 + cosθ) * (1 - cosθ/1 - cosθ)

⇒ (1 - cosθ)^2/sin^2θ

⇒ (1 + cos^2θ-2cosθ)/sin^2θ

⇒ (1/sin^2θ) + (cos^2θ/sin^2θ) - (2cosθ/sinA)

⇒ cosec^2θ + cot^2θ - 2cosecθcotθ

⇒ (cosecθ - cotθ)^2.


Hope this helps u!

Similar questions