Math, asked by asha458, 9 months ago

good evening gys

find area of triangle whoose side is 26cm,30cm,28cm.by using heron's formula​

Answers

Answered by ShírIey
171

Correct Question:-

Find the area of Triangle whose sides are 26 cm , 30 cm & 28 cm.

AnswEr:-

Area is 336 cm².

Step by Step Explanation:-

Given :-

Sides of the triangle are = 26cm , 30cm & 28 cm.

To Find :-

Area of Triangle

\rule{150}3

Explanation:-

By using Heron's Formula:-

:\implies\sf\; \sqrt{s(s - a)(s - b)(s - c)}

Here, s is semiperimeter

:\implies\sf\; s = \dfrac{ a + b + c}{2}

Sides are 26 cm ,30cm & 28 cm

:\implies\sf\; s = \dfrac{ 26 + 30 + 28}{2}

:\implies\sf\;s =\dfrac{82}{2}

:\implies\large\boxed{\sf{\red{s = 42\; cm}}}

\rule{150}3

Now, Finding the area of Triangle

:\implies\sf\; \sqrt{ 42(42 - 26)(42 - 28)(42 - 30)}

:\implies\sf\;\sqrt{ 42\times\; 16\times\; 14\times\; 12}

:\implies\sf\; \sqrt{112896}

:\implies\large\boxed{\sf{\red{336 \; cm^2}}}

\rule{150}3

Answered by Anonymous
3

Question:

Find area of triangle whose side is 26cm,30cm,28cm.by using heron's formula.

To find :

Area of the triangle =??

Formula used :

Heron's formula;

s \:  = ( \frac{a  + b + c}{2} )

S is the semi perimeter.

Area \:  =  \sqrt{s(s - a) (s - b)(s - c)}

Here a, b and c are the sides of the triangle.

Therefore,

a =26cm, b=30cm and c=28cm.

s \:  =  \frac{26 + 28  + 30}{2}  \\ s \:  =  \: 42

area \:  =  \sqrt{42(42 - 26)(42 - 28)(42 - 30)}  \\ area \:  =  \sqrt{42 \times 16 \times 14 \times12}  \\ area \:  =  \sqrt{112896}  = 336 {cm}^{2}

Therefore area of the triangle is 336 cm ².

Similar questions