good morning friends please answer my question. why kelvin is the unit of thermodynamic temperature
Answers
The Kelvin scale is an absolute thermodynamic temperature scaleusing as its null point absolute zero, the temperature at which all thermal motion ceases in the classical description of thermodynamics. The kelvin (symbol: K) is the base unit of temperature in the International System of Units (SI). The kelvin is defined as the fraction 1⁄273.16 of the thermodynamic temperature of the triple point of water (exactly 0.01 °C or 32.018 °F).[1] In other words, it is defined such that the triple point of water is exactly 273.16 K.
The Kelvin scale is named after the Belfast-born, Glasgow University engineer and physicist William Thomson, 1st Baron Kelvin (1824–1907), who wrote of the need for an "absolute thermometric scale". Unlike the degree Fahrenheit and degree Celsius, the kelvin is not referred to or written as a degree. The kelvin is the primary unit of temperature measurement in the physical sciences, but is often used in conjunction with the degree Celsius, which has the same magnitude. The definition implies that absolute zero (0 K) is equivalent to −273.15 °C (−459.67 °F).
For expressing temperature difference or interval, using kelvins instead of degrees Celsius helps to avoid situations when people mistake such quantities for Celsius temperature.[2]The kelvin is the proper temperature unit to be used in derived units, like W/(m·K)[3] or to have a prefix, like milli in mK.
Sorce: Wikipedia
Answer:
The kelvin is the SI unit of thermodynamic temperature
- In buildings, accurate temperature measurements ensure efficient use of energy and human comfort.
- In the food industry, accurate temperature measurements are critical to product quality and safety.
- In manufacturing, accurate temperature measurements are essential for minimising costs and ensuring quality and minimising waste.
- In precision engineering, temperature affects the size of every component, and so the uncertainty in the size of an object is limited by the uncertainty with which its temperature is known.
Accurate temperature measurements are important in every field of human endeavour.
NPL ensures that UK science and engineering can measure temperatures with low uncertainty, thus helping to ensure product quality and reliability.
The kelvin is the SI unit of thermodynamic temperature, and one of the seven SI base units. Unusually in the SI, we also define another unit of temperature, called the degree Celsius (°C). Temperature in degrees Celsius is obtained by subtracting 273.15 from the numerical value of the temperature expressed in kelvin.
Prior to May 2019, all temperatures were defined relative to the triple point of water, the temperature at which water can exist as a solid (ice), a liquid and a gas (water vapour). The temperature at which this condition occurs was defined to be 273.16 K exactly, and every temperature measurement was fundamentally a measure of how much hotter or colder something was than this standard temperature. Whilst convenient for ambient temperatures, this definition increased the uncertainty of measurements at very high and very low temperatures.
Since May 2019, the kelvin and degree Celsius have been defined by taking a fixed numerical value of the Boltzmann constant, k or kB. This change in definition acknowledges that temperature is fundamentally a measure of the average energy of molecular motion.
Thermodynamic temperature is the absolute measure of temperature and is one of the principal parameters of thermodynamics.
Thermodynamic temperature is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point. At this point, absolute zero, the particle constituents of matter have minimal motion and can become no colder.In the quantum-mechanical description, matter at absolute zero is in its ground state, which is its state of lowest energy. Thermodynamic temperature is often also called absolute temperature, for two reasons: the first, proposed by Kelvin, that it does not depend on the properties of a particular material; the second, that it refers to an absolute zero according to the properties of the ideal gas.
Explanation:
i hope u understand