Physics, asked by Anonymous, 10 months ago

Good morning guys, here is a question for you^_^

A body travels uniformly a distance of (13.8 + 0.2)m in a time (4.0 + 0.3)s. Find the velocity of the

body within error limits and the percentage error.
"Don't copy from anywhere, do it on a page and post the solution"​

Answers

Answered by Anonymous
9

Question :

A body travels uniformly a distance of (13.8 ± 0.2)m in a time (4.0 ± 0.3)s. Find the velocity of the body within error limits and the percentage error.

Solution :

  • Time (t) = 4.0 s
  • Error in time (Δt) = ± 0.3 s
  • Distance travelled (s) = 13.8 m
  • Error in distance (Δs) = ± 0.2 m

\underbrace{\sf{Absolute \: velocity}}

\implies \sf{Velocity \: = \: \dfrac{Distance}{Time}} \\ \\ \implies \sf{v \: = \: \dfrac{s}{t}} \\ \\ \implies \sf{v \: = \: \dfrac{13.8}{4.0}} \\ \\ \implies \sf{v \: = \: 3.45}

\therefore Absolute Velocity (v) is 3.45 m/s

_______________________________

\underbrace{\sf{Absolute \: error \: in \: velocity }}

Now,

\implies \sf{\dfrac{\Delta v}{v} \: = \: \dfrac{\Delta s}{s} \: + \: \dfrac{\Delta t}{t}} \\ \\ \implies \sf{\dfrac{\Delta v}{3.45} \: = \: \dfrac{0.2}{13.8} \: + \: \dfrac{0.3}{4}} \\ \\ \implies \sf{\dfrac{\Delta v}{3.45} \: = \: 0.014 \: + \: 0.075} \\ \\ \implies \sf{\dfrac{\Delta v}{3.45} \: = \: 0.08} \\ \\ \implies \sf{\Delta v \: = \: 3.45 \: \times \: 0.08} \\ \\ \implies \sf{\Delta v \: = \: 0.3}

\therefore Absolute Error in velocity is ± 0.3

So,

\longrightarrow \sf{Velcocity \: = \: 3.45 \: \pm \: 0.3 \: ms^{-1}}

_______________________________

\underbrace{\sf{Percentage \: error}}

\implies \sf{\% \: error \: = \: \dfrac{\Delta v}{v} \: \times \: 100} \\ \\ \implies \sf{\% \: error \: = \: \dfrac{0.3}{3.45} \: \times \: 100} \\ \\ \implies \sf{\% \: error \: = \: 0.0869 \: \times \: 100} \\ \\ \implies \sf{\% \: error \: = \: 8.69 \: \%}

Answered by Anonymous
1

Explanation:

here is ur answer nanba......

HOPE IT WILL HELP U NANBA...

HAVE A GOOD TIME.......

Attachments:
Similar questions