Math, asked by queensp73, 10 months ago

Good night friends !! Answer this !!
if alpha and beta are the zeroes of the polynomial p(x)=x²-5x+6,find the value of alpha⁴beta²+alpha²beta⁴​

Answers

Answered by Anonymous
3

Aɴꜱᴡᴇʀ

  \huge\sf{468}

_________________

Gɪᴠᴇɴ

 \sf{p(x) =  {x}^{2}  - 5x + 6}

_________________

ᴛᴏ ꜰɪɴᴅ

 { \alpha }^{4}  { \beta }^{2}  +   { \alpha }^{2}  { \beta }^{4}

_________________

Sᴛᴇᴘꜱ

 \sf{}p(x) =  {x}^{2}  - 5x + 6 \\  \sf{} =  {x }^{2} - 2x - 3x  + 6  \\  \sf{}x(x - 2) - 3(x - 2) \\  \sf{}(x - 3)(x - 2) \\  \sf{}x = 3 \: and \: x =  2

So the zeros of the polynomial are 3 and 2

 \sf{}so \:  \alpha  = 3 \\  \sf{} \beta  = 2 \\  \sf{}so \: sub \: this \: in \:  { \alpha }^{4}  { \beta }^{2}  +  { \alpha }^{2}  { \beta }^{4}

 \sf{}we \: get \: ( {3)}^{4} ( {2)}^{2}  + {(3)}^{2}  {(2)}^{4}  \\  \sf{} = (81 \times 4) +( 9  \times  16) \\  \sf{} = 468

_________________

\huge{\mathfrak{\purple{hope\; it \;helps}}}

Answered by EliteSoul
58

Given:-

Polynomial :-

→ P(x) = x² - 5x + 6

We can find zeros by middle term spitting

→ x² - 5x + 6 = 0

→ x² - 3x - 2x + 6 = 0

→ x(x - 3) - 2(x - 3) = 0

→ (x - 2)(x - 3) = 0

At first,

→ x - 2 = 0

→ x = 2

Again,

→ (x - 3) = 0

→ x = 3

Therefore,

Zeros of polynomial = 2 & 3 .

\rule{200}{1}

Here,

  • α = 2
  • β = 3

Now,we have to find value of :-

  • αβ² + α²β

Putting all values:-

→ (2)⁴ × (3)² + (2)² × (3)⁴

→ (16 × 9) + (4 × 81)

→ 144 + 324

→ 468

Therefore,

Required value is : 468 .

Similar questions