GQ) Use Euclid division lemma
to show that any positive odd
integer is of the form 3p, 3p+1
Answers
Explanation :
Using euclid's division lemma
a = bq + r
Let a be any positive integer.
Here, b = 3 and r = 0, 1, 2 (0 ≤ r ≤ 3)
Case 1.
Now, take b = 3 and r = 0
→ a = 3q + 0
→ a = 3q
Squaring both sides
→ a² = 9q²
= 3(3q²)
Put 3q² = p
= 3p
Case 2.
Similarly, take b = 3 and r = 1
→ a = 3q + 1
Squaring both sides
→ a² = (3q + 1)²
= 9q² + 6q + 1
= 3(3q² + 2q) + 1
Put 3q² + 2q = p
= 3p + 1
Case 3.
Now, take b = 3 and r = 2
→ a = 3q + 2
Squaring both sides
→ a² = (3q + 2)²
= 9q² + 6q + 4
= 9q² + 6q + 3 + 1
= 3(3q² + 2q + 1) + 1
Put 3q² + 2q + 1 = p
= 3p + 1
•°• Squaring of positive odd integer is of the form 3p, 3p+1.
- Use Euclid's division lemma to show that the square of any positive integer is of the form 3p,3p+1.
using Euclid division lemma,
let a = bq + r
where b = 3 and r = 0,1 and 2 , since r ≤ 0 ≤ 3 ...
______________________
Putting r = 0 we get,
→ a = 3q + 0
→ a² = 9q²
→ a² = 3(3q²)
putting 3q² = p now, we get,
→ a² = 3p -------------------(1)
_____________________
Putting r = 1 we get,,
→ a = 3q + 1
→ a² = (3q+1)²
[ (a+b)² = (a²+b²+ab) ]
→ a² = 9q² + 6q + 1
→ a² = 3(3q²+2q) + 1
Putting (3q²+2q) = p now,
→ a² = (3p+1) -------------------(2)
_____________________
putting r = 2 we get,
→ a = 3q + 2
→ a² = (3q+2)²
→ a² = 9q² + 12q + 4
→ a² = 9q² + 12q + 3 + 1
→ a² = 3(3q²+4q+1) + 1
putting (3q²+4q+1) = p we get,
→ a² = (3p+1) -------------------------(3)
_________________________